AEC-Q200: Contact Bourns to confirm availiability.
For Standard Values Used in Capacitors, Inductors, and Resistors,
click here.
Chip Dimensions
Dimension
L
W
H
I1
I2
Model
CR0603
1.60±0.10
(0.063±0.004)
0.80±0.10
(0.031±0.004)
0.45±0.10
(0.018±0.004)
0.30±0.20
(0.012±0.008)
0.30±0.20
(0.012±0.008)
Model
CR0805
2.00±0.15
(0.079±0.006)
1.25±0.15
(0.049±0.006)
0.50±0.10
(0.020±0.004)
0.40±0.20
(0.016±0.008)
0.40±0.20
(0.016±0.008)
Model
CR1206
3.20±0.25
(0.126±0.010)
1.60±0.15
(0.063±0.006)
0.60±0.15
(0.024±0.006)
0.50±0.25
(0.020±0.010)
0.50±0.20
(0.020±0.010)
DIMENSIONS:
MM
(INCHES)
Dimensional Drawings
Characteristic Data
I1
I1
H
I2
L
I2
W
Resistor (Ru0
2
)
(Jumper chip is
a conductor)
Overcoat
Derating Curve
100
Rated Power (%)
80
60
40
20
0
-55
0
70
155
Alumina Substrate
Internal Electrode (Ag)
Secondary Electrode (Nickel Plated)
External Electrode
(tin-plated)
Ambient Temperature (°C)
*RoHS Directive 2002/95/EC Jan. 27, 2003 including
annex and RoHS Recast 2011/65/EU June 8, 2011.
Specifications are subject to change without notice.
The device characteristics and parameters in this data
sheet can and do vary in different applications and
actual device performance may vary over time.
Users should verify actual device performance in their
specific applications.
CR0603/CR0805/CR1206 - Chip Resistors
Performance Characteristics
Test
DC Resistance
Low Temperature
Operation
Short time
Overload
High Temperature
Exposure
Resistance to
Solder Heat
Moisture Resis-
tance
Load Life
Solderability
Terminal Strength
Current Noise
Humidity, Steady
State
Salt Spray
Vibration
Voltage Coefficient
Insulation Resis-
tance
Dielectric With-
standing Voltage
Drop Test
Bending Test
Thermal Shock
Resistance to Dry
Heat
Procedure
--
-55 °C, 1 hour “OFF”;
45 minutes "ON"
Rated Voltage x 2.5,
5 seconds:
CR0603: 100 V max.
CR0805: 300 V max.
CR1206: 400 V max.
+125 °C, 1000 hours
260 °C, 10 seconds
90-98 % RH, 10 cycles
+70 °C; 1.5 hours “ON”,
0.5 hours “OFF”; 1000 hours
+235 °C; 3 seconds
Pull Test
Quan-Tech Model 315B
+40 °C; 90-95 % RH,
1344 hours
96 hours
10-2000 Hz, 6 hours
--
Test potential: 500V
CR0603: 100 V
--
1m
5 mm/90 mm, 10 seconds
-55 °C for 30 minutes,
+155 °C for 30 minutes,
5 cycles
125 ±5 °C for 96 ±4 hours
Method
MIL-STD-202 303
EIA RS-396 4.4
MIL-R-55342D 4.7.4
EIA RS-396 4.6
MIL-R-55342D 4.7.5
EIA RS-396 4.7
MIL-R-55342D 4.7.6
EIA RS-396 4.8
MIL-R-55342D 4.7.7
MIL-STD-202 106D
EIA RS-396 4.9
MIL-STD-202 108
Condition D
EIA RS-396 4.12
MIL-STD-202 208
EIA RS-396 4.11
MIL-R-55342D 4.7.12
MIL-STD-202 308
MIL-STD-202 103B
Condition D
MIL-STD-202 101D
Condition A
MIL-STD-202 201A
MIL-STD-202 309
MIL-STD-202 302
Condition B
MIL-STD-202 301
MIL-STD-202 203B
--
IEC 60115-1-4.19
IEC 60115-1-4.23.2
Specification
MIL-R-55342D 4.7.2
MIL-R-55342D 4.7.4
MIL-R-55342D 4.7.5
MIL-R-55342D 4.7.6
MIL-R-55342D 4.7.7
MIL-R-55342D 4.7.8
MIL-R-55342D 4.7.10
MIL-R-55342D 4.7.11
MIL-R-55342D 4.7.12
MIL-R-55342D 6.6
--
--
--
--
--
--
--
--
--
--
1%
≤±1 %
≤±(0.5 % + 0.05 Ω)
≤±(1 % + 0.05 Ω)
≤±(1.0 % + 0.05 Ω)
≤±(0.5 % + 0.05 Ω)
≤±(0.5 % + 0.05 Ω)
≤±(1.0 % + 0.05 Ω)
Test Limits
DR
5%
≤±5.0 %
≤±(1.0 % + 0.05 Ω)
≤±(2 % + 0.05 Ω)
≤+(2.0 % + 0.1 Ω)
≤±(1.0 % + 0.05 Ω)
≤±(2.0 % + 0.05 Ω)
≤±(3.0 % + 0.1Ω)
≥95 % of area covered
≥500 g
R≤1 kW; 1 mV/V max.
R≤10 kW; 3 mV/V max.
R≤100 kW; 6 mV/V max.
R≤1 MW; 10 mV/V max.
≤±(2.5 % + 0.05 Ω)
≤±(1.0 % + 0.2 Ω)
≤±(2.5 % + 0.05 Ω
≤±(1.0 % + 0.1 Ω
≤±(0.5 % + 0.1 Ω)
≤±(1.0 % + 0.1 Ω
≤100 ppm/V
≥1 GΩ
CR0805, CR1206: ≥500 V
CR0603: ≥300 V
≤±(0.5 % + 0.1 Ω)
≤±(1 % + 0.1 Ω
≤±(1 % + 0.05 Ω)
≤±(1 % + 0.05 Ω)
≤±(0.5% + 0.05 Ω)
≤±(1 % + 0.05 Ω)
≤±(1 % + 0.05 Ω)
≤±(2 % + 0.1 Ω)
Specifications are subject to change without notice.
The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.
Users should verify actual device performance in their specific applications.
CR0603/CR0805/CR1206 - Chip Resistors
Soldering Profile for RoHS Compliant Chip Resistors and Arrays
275
+255 °C and +260 °C
225
220 °C
Temperature (°C)
190 °C
175
150 °C
60 - 90
seconds
Ramp Down
6 °C/second
60 - 120 seconds
10 seconds minimum
75
Ramp Up
3 °C/second maximum
25
<1>
Maximum of 20 seconds between
<1>
255 °C
260 °C peak
125
0
50
100
150
Time (seconds)
200
250
300
Packaging Dimensions (Conforms to EIA RS-481A)
4.0 ± 0.1
(.157 ± .004)
B
A
3.5 ± 0.05
(.138 ± .002)
8.0 ± 0.2
(.315 ± .008)
2.0
(.080)
13.0 ± 0.5
(.512 ± .020)
80.0 ± 1.0
(3.150 ± .040)
2.0 ± 0.05
(.079 ± .002)
1.0 ± 0.2
(.040 ± .020)
4.0 ± 0.1
(.157 ± .004)
Maximum 1 mm (.040) thick
*Cumulative tolerance over 10 holes: ±0.2 mm
1.5 +0.1/-0
(.056 + .004/-0)
1.75 ± 0.1
(.059 ± .004)
20.5
(.807)
178.0 ± 2.0
(7.008 ± .080)
Series
CR0603
CR0805
CR1206
A
1.9 ± 0.2
(.075 ± .008)
2.4 ± 0.2
(.094 ± .008)
3.57 ± 0.2
(.161 ± .008)
B
1.1 ± 0.2
(.043 ± .008)
1.65 ± 0.2
(.065 ± .008)
2.00 ± 0.2
(.079 ± .008)
DIMENSIONS:
10.0 ± 1.5
(.394 ± .059)
MM
(INCHES)
Marking on reel: Part number, quantity, resistance value and tolerance, date code.
Specifications are subject to change without notice.
The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.
Users should verify actual device performance in their specific applications.
CR0603/CR0805/CR1206 - Chip Resistors
Resistor Markings
CR0603
CR0805
CR1206
CR0805
CR1206
CR0603
EIA-96 Marking
Marking Explanation
• E-24: 3 digits, first two digits are
significant, third digit is number of
zeros.
Letter R is decimal point.
• E-96: 4 digits, first three digits are
significant, fourth digit is number of
zeros.
Letter R is decimal point.
0603 E-96: EIA-96 marking (see table
below).
E-24 marking
Value = 10K ohms
E-96 marking
Value = 44.2K ohms
1 % marking
Value = 12.4K ohms
EIA-96 Marking for CR0603, 1 %
Code R Value
01
02
03
04
05
06
07
08
09
10
11
12
100
102
105
107
110
113
115
118
121
124
127
130
Code
13
14
15
16
17
18
19
20
21
22
23
24
R Value
133
137
140
143
147
150
154
158
162
165
169
174
Code
25
26
27
28
29
30
31
32
33
34
35
36
R Value
178
182
187
191
196
200
205
210
215
221
226
232
Code
37
38
39
40
41
42
43
44
45
46
47
48
R Value Code
237
243
249
255
261
267
274
280
287
294
301
309
49
50
51
52
53
54
55
56
57
58
59
60
R Value
316
324
332
340
348
357
365
374
383
392
402
412
Code R Value
61
62
63
64
65
66
67
68
69
70
71
72
422
432
442
453
464
475
487
499
511
523
536
549
Code
73
74
75
76
77
78
79
80
81
82
83
84
R Value
562
576
590
604
619
634
649
665
681
698
715
732
Code R Value
85
86
87
88
89
90
91
92
93
94
95
96
750
768
787
806
825
845
866
887
909
931
953
976
This table shows the first two digits for the three-digit EIA-96 part marking scheme. The third character is a letter multiplier:
Y=10
-2
X=10
-1
A=10
0
B=10
1
C=10
2
D=10
3
E=10
4
F=10
5
Specifications are subject to change without notice.
The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.
Users should verify actual device performance in their specific applications.
CR0603/CR0805/CR1206 - Chip Resistors
CR 1206 - F X - 8252 E LF
How To Order
Model
(CR = Chip Resistor)
Size
• 0603
• 0805
• 1206
Resistance Tolerance
F = ±1 % ................Use with “X” TCR code only for values from 10 ohms through 1 megohm;
Use with “W” TCR code only for values from 1 megohm through 10 megohms.
J = ±5 % .................Use with “W” TCR code for values from 10 ohms through 10 megohms;
Use with “Z” TCR code for values above 10 megohms through 20 megohms;
Use with “/” TCR code for zero ohm (jumper) and values from 1 ohm through 9.1 ohms.
TCR (ppm/°C)
X = ±100
W = ±200
Z = ±400
/ = Used with “J” Resistance Tolerance code for zero ohm (jumper) and values from 1 ohm through 9.1 ohms.
Resistance Value
For 1 % Tolerance:
<100
ohms...............“R” represents decimal point
(example: 24R3 = 24.3 ohms).
≥100
ohms...............First three digits are significant, fourth digit represents number of zeros to follow (example:
8252 = 82.5k ohms).
For 5 % Tolerance:
<10
ohms............. “R” represents decimal point
(example: 4R7 = 4.7 ohms).
≥10
ohms............. First two digits are significant, third digit represents number of zeros to follow (example:
474 = 470k ohms; 000 = Jumper).
Packaging
E = Paper Tape (5,000 pcs.) on 7 ” Plastic Reel
Termination
LF = Tin-plated (RoHS Compliant)
REV. 11/16
Specifications are subject to change without notice.
The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.
Users should verify actual device performance in their specific applications.
This is a microcontroller IO port input circuit that has been used for many years. EVCC is the common power supply terminal, which is a common anode input. I have always thought that R2 in the figure ...
//-------------------------------------------------------- //EEPROM byte write program //Function: write a byte to the internal EEPROM //Entry: EEADR = address //EEDATA = data //----------------------...
As shown in the figure above, a piece of original voice data is amplified by a certain multiple without distortion after passing through the amplifier circuit, but the phase is reversed by 180°. Will ...
[i=s]This post was last edited by damiaa on 2019-3-6 10:47[/i] STMicroelectronics is launching the STM32MP1. What do you think of this chip? My personal opinion: ST has finally launched a chip that ru...
[p=28, null, left][color=rgb(85, 85, 85)][font=微软雅黑, 微软雅黑, "][size=14px]PCB component pad design is a key point. The quality of the final product lies in the quality of the solder joint. Therefore, wh...
Adafruit Mini PiTFT for Raspberry Pi – 135×240 color TFT add-on, ready to mount to any Raspberry Pi to display anything. The Mini PiTFT features a full-color 240×135 pixel IPS display for excellent vi...
Recently, Xiaomi announced an important parameter of Xiaomi 12 Pro: it adopted the second-generation LTPO display for the first time, realizing intelligent dynamic refresh rate adjustment, whic...[Details]
1. Introduction of foreign products
(1) Toyota vehicle controller
The schematic diagram of Toyota's vehicle controller is shown below:
The car is rear-wheel drive, with the lef...[Details]
China Energy Storage Network:
Right now, January has not yet ended, and 2019 has only just begun for more than 20 days. If we take stock of the new words and hot words in the first month of t...[Details]
On October 22, Zhang Long, general manager and deputy secretary of the Party Committee of Three Gorges Energy, held a discussion with Hou Jinlong, director of Huawei and president of Huawei Digital...[Details]
Experiment Name: Application of Power Amplifier Health Monitoring Method Based on Piezoelectric Active Sensing Technology
Purpose:
The time inversion method of piezoelectric ceramic...[Details]
1 Introduction Laser processing technology can be divided into laser cutting, laser welding, and laser heat treatment according to its application. It has been widely used in the automotive, electron...[Details]
introduction
In the field of optical communications, electro-absorption modulated lasers (EML) used for high-speed and long-distance communications have high requirements for temperature stability ...[Details]
Dialog Semiconductor, a leading provider of power management, charging, AC/DC power conversion, Wi-Fi, and Bluetooth Low Energy (BLE) technologies, today announced that its EcoXiP™ octal xSPI non-vol...[Details]
At present, the reliability of power supply in Shanghai has reached 99.996%, and the power supply is stable and sufficient; key epidemic prevention units enjoy the green channel of "no power outage...[Details]
As we all know, fuel cells are very environmentally friendly because their combustion products are mainly water. Recently, researchers at the University of Copenhagen have made new progres...[Details]
The development of the semiconductor testing market has prospered along with the development of the semiconductor industry. In 2018, the scale of my country's semiconductor testing market has reached...[Details]
There are three main types of original power sources for LED power supply: low-voltage batteries, solar cells and AC mains power supply. No matter which original power source is used, it must undergo...[Details]
How to deal with the phenomenon of wind and solar power abandonment? How to solve the safety problem of energy storage facilities? On October 29, the green and low-carbon technology project promotion ...[Details]