TS4909
Dual mode low power 150 mW stereo headphone amplifier with
capacitor-less and single-ended outputs
Datasheet
−
production data
Features
■
DFN10 (3 x 3)
No output coupling capacitors necessary
■
Pop-and-click noise reduction circuitry
■
Operating from V
CC
= 2.2 V to 5.5 V
■
■
■
■
■
■
■
■
■
Standby mode active low
Output power:
– 158 mW at 5 V, into 16
Ω
with 1% THD+N
max (1 kHz)
– 52 mW at 3.0 V into 16
Ω
with 1% THD+N
max (1 kHz)
Ultra-low current consumption: 2.0 mA typ. at
3V
Ultra-low standby consumption: 10 nA typ.
High signal-to-noise ratio: 105 dB typ. at 5 V
High crosstalk immunity: 110 dB (F = 1 kHz)
for single-ended outputs
PSRR: 72 dB (F = 1 kHz), inputs grounded, for
phantom ground outputs
Low t
WU
: 50 ms in PG mode, 100 ms in SE mode
Available in lead-free DFN10 3 x 3 mm
Pin connections (top view)
Vin1
Stdby
SE/PHG
Bypass
Vin2
1
2
3
4
5
10
9
8
7
6
Vdd
Vout1
Vout3
Vout2
Gnd
Functional block diagram
Vdd
SE/PHG
Vin1
Vout1
Applications
■
■
Stdby
Vout3
Bypass
BIAS
Headphone amplifier
■
Mobile phone
Vout2
PDA, portable audio player
Vin2
Description
The TS4909 is a stereo audio amplifier designed
to drive headphones in portable applications. The
integrated phantom ground is a circuit topology
that eliminates the heavy output coupling
capacitors. This is of primary importance in
portable applications where space constraints are
very high. A single-ended configuration is also
available, offering even lower power consumption
because the phantom ground can be switched off.
Pop-and-click noise during switch-on and switch-
off phases is eliminated by integrated circuitry.
Gnd
Specially designed for applications requiring low
power supplies, the TS4909 is capable of
delivering 31 mW of continuous average power
into a 32
Ω
load with less than 1% THD+N from a
3 V power supply. Featuring an active low
standby mode, the TS4909 reduces the supply
current to only 10 nA (typ.). The TS4909 is unity
gain stable and can be configured by external
gain-setting resistors.
January 2013
This is information on a product in full production.
Doc ID 11972 Rev 9
1/35
www.st.com
35
Contents
TS4909
Contents
1
2
3
4
Typical application schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Absolute maximum ratings and operating conditions . . . . . . . . . . . . . 6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1
4.2
4.3
4.4
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Gain using the typical application schematics . . . . . . . . . . . . . . . . . . . . . 24
Power dissipation and efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.1
4.4.2
4.4.3
Single-ended configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Phantom ground configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5
4.6
4.7
4.8
Decoupling of the circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Wake-up time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Pop performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5
6
7
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2/35
Doc ID 11972 Rev 9
TS4909
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Typical applications for the TS4909 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Open-loop frequency response, R
L
= 1 MΩ.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Open-loop frequency response, R
L
= 100
Ω,
C
L
= 400 pF . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Open-loop frequency response, R
L
= 1 MΩ, C
L
= 100 pF . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Open-loop frequency response, R
L
= 16
Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Open-loop frequency response, R
L
= 16
Ω,
C
L
= 400 pF . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Output swing vs. power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
THD+N vs. output power, PHG, F = 1 kHz, R
L
= 16
Ω,
Av = 1. . . . . . . . . . . . . . . . . . . . . . 10
THD+N vs. output power, PHG, F = 20 kHz, R
L
= 16
Ω,
Av = 1. . . . . . . . . . . . . . . . . . . . . 10
THD+N vs. output power, PHG, F = 1 kHz, R
L
= 32
Ω,
Av = 1. . . . . . . . . . . . . . . . . . . . . . 10
THD+N vs. output power, PHG, F = 20 kHz, R
L
= 32
Ω,
Av = 1. . . . . . . . . . . . . . . . . . . . . 10
THD+N vs. output power, SE, F = 1 kHz, R
L
= 16
Ω,
Av = 1 . . . . . . . . . . . . . . . . . . . . . . . 10
THD+N vs. output power, SE, F = 20 kHz, R
L
= 16
Ω,
Av = 1 . . . . . . . . . . . . . . . . . . . . . . 10
THD+N vs. output power, SE, F = 1 kHz, R
L
= 32
Ω,
Av = 1 . . . . . . . . . . . . . . . . . . . . . . . 11
THD+N vs. output power, SE, F = 20 kHz, R
L
= 32
Ω,
Av = 1 . . . . . . . . . . . . . . . . . . . . . . 11
THD+N vs. output power, PHG, F = 1 kHz, R
L
= 16
Ω,
Av = 4. . . . . . . . . . . . . . . . . . . . . . 11
THD+N vs. output power, PHG, F = 20 kHz, R
L
= 16
Ω,
Av = 4. . . . . . . . . . . . . . . . . . . . . 11
THD+N vs. output power, PHG, F = 1 kHz, R
L
= 32
Ω,
Av = 4. . . . . . . . . . . . . . . . . . . . . . 11
THD+N vs. output power, PHG, F = 20 kHz, R
L
= 32
Ω,
Av = 4. . . . . . . . . . . . . . . . . . . . . 11
THD+N vs. output power, SE, F = 1 kHz, R
L
= 16
Ω,
Av = 4 . . . . . . . . . . . . . . . . . . . . . . . 12
THD+N vs. output power, SE, F = 20 kHz, R
L
= 16
Ω,
Av = 4 . . . . . . . . . . . . . . . . . . . . . . 12
THD+N vs. output power, SE, F = 1 kHz, R
L
= 32
Ω,
Av = 4 . . . . . . . . . . . . . . . . . . . . . . . 12
THD+N vs. output power, SE, F = 20 kHz, R
L
= 32
Ω,
Av = 4 . . . . . . . . . . . . . . . . . . . . . . 12
THD+N vs. frequency, PHG, R
L
= 16
Ω,
Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
THD+N vs. frequency, PHG, R
L
= 32
Ω,
Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
THD+N vs. frequency, SE, R
L
= 16
Ω,
Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
THD+N vs. frequency, SE, R
L
= 32
Ω,
Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
THD+N vs. frequency, PHG, R
L
= 16
Ω,
Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
THD+N vs. frequency, PHG, R
L
= 32
Ω,
Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
THD+N vs. frequency, SE, R
L
= 16
Ω,
Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
THD+N vs. frequency, SE, R
L
= 32
Ω,
Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Output power vs. power supply voltage, PHG, R
L
= 16
Ω,
F = 1 kHz. . . . . . . . . . . . . . . . . 14
Output power vs. power supply voltage, PHG, R
L
= 32
Ω,
F = 1 kHz. . . . . . . . . . . . . . . . . 14
Output power vs. power supply voltage, SE, R
L
= 16
Ω,
F = 1 kHz . . . . . . . . . . . . . . . . . . 14
Output power vs. power supply voltage, SE, R
L
= 32
Ω,
F = 1 kHz . . . . . . . . . . . . . . . . . . 14
Output power vs. load resistance, PHG, Vcc = 2.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Output power vs. load resistance, SE, Vcc = 2.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Output power vs. load resistance, PHG, Vcc = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Output power vs. load resistance, SE, Vcc = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Output power vs. load resistance, PHG, Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Output power vs. load resistance, SE, Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Power dissipation vs. output power, PHG, Vcc = 2.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Power dissipation vs. output power, SE, Vcc = 2.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Power dissipation vs. output power, PHG, Vcc = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Power dissipation vs. output power, SE, Vcc = 3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Power dissipation vs. output power, PHG, Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Power dissipation vs. output power, SE, Vcc = 5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Crosstalk vs. frequency, SE, Vcc = 5 V, R
L
= 16
Ω,
Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . 16
Doc ID 11972 Rev 9
3/35
List of figures
TS4909
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.
Figure 75.
Figure 76.
Figure 77.
Figure 78.
Figure 79.
Figure 80.
Figure 81.
Figure 82.
Figure 83.
Figure 84.
Figure 85.
Crosstalk vs. frequency, SE, Vcc = 5 V, R
L
= 32
Ω,
Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . 16
Crosstalk vs. frequency, SE, Vcc = 5 V, R
L
= 16
Ω,
Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . 17
Crosstalk vs. frequency, SE, Vcc = 5 V, R
L
= 32
Ω,
Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . 17
Crosstalk vs. frequency, PHG, Vcc = 5 V, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Crosstalk vs. frequency, PHG, Vcc = 5 V, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
SNR vs. power supply voltage, PHG, unweighted, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 17
SNR vs. power supply voltage, SE, unweighted, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 17
SNR vs. power supply voltage, PHG, A-weighted, Av = 1 . . . . . . . . . . . . . . . . . . . . . . . . . 18
SNR vs. power supply voltage, SE, A-weighted, Av = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
SNR vs. power supply voltage, PHG, unweighted, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . 18
SNR vs. power supply voltage, SE, unweighted, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 18
SNR vs. power supply voltage, PHG, A-weighted, Av = 4 . . . . . . . . . . . . . . . . . . . . . . . . . 18
SNR vs. power supply voltage, SE, A-weighted, Av = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Power supply rejection ratio vs. frequency vs. Vcc, PHG . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Power supply rejection ratio vs. frequency vs. Vcc, SE . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Power supply rejection ratio vs. frequency vs. gain, PHG . . . . . . . . . . . . . . . . . . . . . . . . . 19
Power supply rejection ratio vs. frequency vs. gain, SE . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
PSRR vs. frequency vs. bypass capacitor, PHG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
PSRR vs. frequency vs. bypass capacitor, SE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Current consumption vs. power supply voltage, PHG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Current consumption vs. power supply voltage, SE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Current consumption vs. standby voltage, Vcc = 2.6 V, PHG . . . . . . . . . . . . . . . . . . . . . . 20
Current consumption vs. standby voltage, Vcc = 2.6 V, SE . . . . . . . . . . . . . . . . . . . . . . . . 20
Current consumption vs. standby voltage, Vcc = 3 V, PHG . . . . . . . . . . . . . . . . . . . . . . . . 20
Current consumption vs. standby voltage, Vcc = 3 V, SE . . . . . . . . . . . . . . . . . . . . . . . . . 20
Current consumption vs. standby voltage, Vcc = 5 V, PHG . . . . . . . . . . . . . . . . . . . . . . . . 21
Current consumption vs. standby voltage, Vcc = 5 V, SE . . . . . . . . . . . . . . . . . . . . . . . . . 21
Power derating curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Higher cut-off frequency vs. feedback capacitor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Lower cut-off frequency vs. input capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Lower cut-off frequency vs. output capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Current delivered by power supply voltage in single-ended configuration . . . . . . . . . . . . . 24
Current delivered by power supply voltage in phantom ground configuration . . . . . . . . . . 25
Typical wake-up time vs. bypass capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Internal equivalent circuit schematics of the TS4909 in standby mode . . . . . . . . . . . . . . . 28
TS4909 footprint recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
DFN10 3 x 3 pitch 0.5 mm exposed pad package mechanical drawing . . . . . . . . . . . . . . . 30
4/35
Doc ID 11972 Rev 9
TS4909
Typical application schematics
1
Typical application schematics
Figure 1.
Typical applications for the TS4909
Rfeed1
20k
Vcc
Phantom ground configuration
Cs
1μF
SE/PHG
Vin1
Cin1
330nF
Standby
Vout3
Cb
1μF
Vin2
330nF
20k
Vout2
Rin2
Cin2
Gnd
BIAS
20k
Vout1
Rin1
20k
Rfeed2
Rfeed1
20k
Vcc
Cs
Single-ended configuration
Vin1
Cin1
330nF
Standby
20k
1μF
SE/PHG
Cout1
Vout1
Rin1
Vout3
Cb
1μF
BIAS
Vin2
Cout2
330nF
20k
Vout2
Rin2
Cin2
Gnd
20k
Rfeed2
Table 1.
Component
R
in1,2
C
in1,2
R
feed1,2
C
b
C
s
Application component information
Functional description
Inverting input resistor that sets the closed loop gain in conjunction with R
feed
. This
resistor also forms a high pass filter with C
in
(f
c
= 1 / (2 x Pi x R
in
x C
in
)).
Input coupling capacitor that blocks the DC voltage at the amplifier’s input terminal.
Feedback resistor that sets the closed loop gain in conjunction with R
in
.
A
V
= closed loop gain = -R
feed
/R
in
.
Half supply bypass capacitor
Supply bypass capacitor that provides power supply filtering.
Doc ID 11972 Rev 9
5/35