APT45GP120J
1200V
POWER MOS 7 IGBT
G
The POWER MOS 7 IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
®
®
E
C
E
OT
S
2
-2
7
"UL Recognized"
ISOTOP
®
• Low Conduction Loss
• Low Gate Charge
• Ultrafast Tail Current shutoff
MAXIMUM RATINGS
Symbol
V
CES
V
GE
V
GEM
I
C1
I
C2
I
CM
RBSOA
P
D
T
J
,T
STG
T
L
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Gate-Emitter Voltage Transient
• 50 kHz operation @ 800V, 16A
• 20 kHz operation @ 800V, 30A
• RBSOA rated
G
C
E
All Ratings: T
C
= 25°C unless otherwise specified.
APT45GP120J
UNIT
1200
±20
±30
75
34
170
170A @ 960V
329
-55 to 150
300
Watts
°C
Amps
Volts
Continuous Collector Current @ T
C
= 25°C
Continuous Collector Current @ T
C
= 110°C
Pulsed Collector Current
1
@ T
C
= 25°C
Reverse Bias Safe Operating Area @ T
J
= 150°C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
STATIC ELECTRICAL CHARACTERISTICS
Symbol
BV
CES
V
GE(TH)
V
CE(ON)
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (V
GE
= 0V, I
C
= 500µA)
Gate Threshold Voltage
(V
CE
= V
GE
, I
C
= 1mA, T
j
= 25°C)
MIN
TYP
MAX
UNIT
1200
3
4.5
3.3
3.0
500
2
6
3.9
Volts
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 45A, T
j
= 25°C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 45A, T
j
= 125°C)
Collector Cut-off Current (V
CE
= 1200V, V
GE
= 0V, T
j
= 25°C)
2
I
CES
I
GES
µA
nA
6-2003
050-7430
Rev C
Collector Cut-off Current (V
CE
= 1200V, V
GE
= 0V, T
j
= 125°C)
Gate-Emitter Leakage Current (V
GE
= ±20V)
2500
±100
CAUTION:
These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
DYNAMIC CHARACTERISTICS
Symbol
C
ies
C
oes
C
res
V
GEP
Q
g
Q
ge
Q
gc
RBSOA
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge
3
APT45GP120J
Test Conditions
Capacitance
V
GE
= 0V, V
CE
= 25V
f = 1 MHz
Gate Charge
V
GE
= 15V
V
CE
= 600V
I
C
= 45A
T
J
= 150°C, R
G
= 5Ω, V
GE
=
15V, L = 100µH,V
CE
= 960V
Inductive Switching (25°C)
V
CC
= 600V
V
GE
= 15V
I
C
= 45A
4
5
MIN
TYP
MAX
UNIT
3935
300
55
7.5
185
25
80
170
18
29
102
38
900
1869
904
18
29
151
79
900
3078
2254
MIN
TYP
MAX
UNIT
°C/W
gm
ns
ns
A
nC
V
pF
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Safe Operating Area
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
Symbol
R
ΘJC
R
ΘJC
W
T
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
Turn-on Switching Energy (Diode)
Turn-off Switching Energy
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
44
55
6
R
G
= 5Ω
T
J
= +25°C
µ
J
Inductive Switching (125°C)
V
CC
= 600V
V
GE
= 15V
I
C
= 45A
R
G
= 5Ω
T
J
= +125°C
Turn-on Switching Energy (Diode)
Turn-off Switching Energy
66
µ
J
THERMAL AND MECHANICAL CHARACTERISTICS
Characteristic
Junction to Case (IGBT)
Junction to Case (DIODE)
Package Weight
.38
N/A
29.2
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, I
ces
includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 E
on1
is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 E
on2
is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 E
off
is the clamped inductive turn-off energy measured in accordance wtih JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
050-7430
Rev C
6-2003
TYPICAL PERFORMANCE CURVES
90
80
I
C
, COLLECTOR CURRENT (A)
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
90
80
I
C
, COLLECTOR CURRENT (A)
APT45GP120J
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
70
60
50
40
30
20
10
0
0 0.5
1
1.5
2
2.5
3
3.5
4
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(V
GE
= 15V)
160
140
T
C
=25°C
T
C
=125°C
70
60
50
40
30
20
10
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (V
GE
= 10V)
16
T
C
=125°C
T
C
=25°C
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
14
12
10
8
6
4
2
0
I
C
= 45A
T
J
= 25°C
I
C
, COLLECTOR CURRENT (A)
V
CE
=240V
V
CE
=600V
120
100
80
60
40
20
0
0
1
2
3
4 5
6 7
8
9 10
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
I
C
= 90A
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
TJ = -55°C
TJ = 25°C
TJ = 125°C
V
CE
=960V
0
20 40
60 80 100 120 140 160 180 200
GATE CHARGE (nC)
FIGURE 4, Gate Charge
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
5
5
4.5
4
3.5
3
2.5
2.0
1.5
1.0
0.05
0
0
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
4
I
C
= 45A
3
I
C
= 22.5A
2
I
C
= 90A
I
C
= 45A
I
C
= 22.5A
1
0
8
10
12
14
16
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.2
1.15
1.10
1.05
1.0
0.95
0.9
0.85
0.8
-50
6
25
50
75
100
125
T
J
, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
120
I
C,
DC COLLECTOR CURRENT(A)
BV
CES
, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
100
80
60
20
0
-50
Rev C
050-7430
-25
0
25
50
75
100 125
T
J
, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
0
25
50
75 100 125 150
T
C
, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
-25
6-2003
40
TYPICAL PERFORMANCE CURVES
35
30
25
20
15
10
5
0
0 10 20 30 40 50 60 70 80 90
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
80
70
60
t
r,
RISE TIME (ns)
T
J
=
25 or 125°C,V
GE
=
10V
APT45GP120J
180
t
d (OFF)
, TURN-OFF DELAY TIME (ns)
t
d(ON)
, TURN-ON DELAY TIME (ns)
160
140
120
100
80
60
40
20
0
V
GE
=10V,T
J
=125°C
V
GE
=
15V,T
J
=125°C
V
GE
= 10V
V
GE
= 15V
V
GE
=
15V,T
J
=25°C
V
GE
=
10V,T
J
=25°C
V
CE
= 600V
T
J
= 25°C or 125°C
R
G
= 5Ω
L = 100 µH
V
CE
= 600V
R
G
= 5Ω
L = 100 µH
0 10 20 30 40 50 60 70 80 90
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
100
90
80
t
f,
FALL TIME (ns)
T
J
=
125°C, V
GE
=
10V or 15V
70
60
50
40
30
20
T
=
25°C, V
GE
=
10V or 15V
J
50
40
30
20
10
R
=
5Ω, L
=
100
µ
H, V
CE
=
600V
T
J
=
25 or 125°C,V
GE
=
15V
10
0
0
10 20
30
40 50
60
70 80
90
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
8000
E
ON2
, TURN ON ENERGY LOSS (µJ)
V
CE
= 600V
L = 100 µH
R
G
= 5
Ω
G
R
=
5Ω, L
=
100
µ
H, V
CE
=
600V
G
10 20
30
40
50
60 70
80
90
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
6000
V
CE
= 600V
L = 100 µH
R
G
= 5
Ω
7000
6000
5000
4000
3000
2000
1000
T
J
=125°C, V
GE
=15V
E
OFF
, TURN OFF ENERGY LOSS (µJ)
5000
T
J
=125°C,V
GE
=10V
T
=
125°C, V
GE
=
10V or 15V
J
4000
3000
2000
T
J
= 25°C, V
GE
=15V
1000
0
T
J
=
25°C, V
GE
=
10V or 15V
0
10 20
30
40 50
60
70
80 90
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
12000
SWITCHING ENERGY LOSSES (µJ)
V
CE
= 600V
V
GE
= +15V
T
J
= 125°C
T
J
= 25°C, V
GE
=10V
0
20
30
40
50
60 70 80
90
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
8000
SWITCHING ENERGY LOSSES (µJ)
V
CE
= 600V
V
GE
= +15V
R
G
= 5
Ω
E
on2
90A
10000
8000
7000
6000
5000
4000
E
on2
90A
E
off
90A
6000
E
on2
45A
4000
E
off
45A
2000
0
E
on2
22.5A
E
off
22.5A
10
20
30
40
50
R
G
, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
E
off
90A
3000
2000
1000
E
off
22.5A
0
0
E
on2
45A
E
off
45A
E
on2
22.5A
Rev C
6-2003
050-7430
25
50
75
100
125
T
J
, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
10,000
5,000
I
C
, COLLECTOR CURRENT (A)
180
Cies
160
140
120
100
180
160
140
120
APT45GP120J
C, CAPACITANCE ( F)
P
1,000
500
Coes
100
50
Cres
10
20
30
40
50
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
10
0
0
0 100 200 300 400 500 600 700 800 900 1000
V
CE
, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.40
Z
JC
, THERMAL IMPEDANCE (°C/W)
θ
0.35
0.30
0.25
0.9
0.7
0.5
0.20
0.15
0.10
0.1
0.05
0
0.05
10
-5
10
-4
SINGLE PULSE
0.3
Note:
PDM
t1
t2
t
Duty Factor D = 1/t2
Peak TJ = PDM x Z
θJC
+ TC
10
-3
10
-2
10
-1
1.0
RECTANGULAR PULSE DURATION (SECONDS)
FIGURE 1, MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs PULSE DURATION
90
RC MODEL
10
Junction
temp. ( ”C)
F
MAX
, OPERATING FREQUENCY (kHz)
0.0339
0.000443F
Power
(Watts)
10
0.0806
0.0269F
0.265
Case temperature
0.608F
T
J
= 125
°
C
T
C
= 75
°
C
D = 50 %
V
CE
= 800V
R
G
= 5
Ω
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
20
30
40
50
60
70
I
C
, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
1
10
F
max
=
min(f
max1
, f
max 2
)
f
max1
=
f
max 2
=
P
diss
=
t
d (on )
0.05
+
t
r
+
t
d(off )
+
t
f
T
J
−
T
C
R
θ
JC
050-7430
Rev C
6-2003
P
diss
−
P
cond
E
on 2
+
E
off