Single Pulse Avalanche Energy Rating (Note 4) . . . . . . . . . . E
AS
Operating and Storage Temperature . . . . . . . . . . . . . T
J,
T
STG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s . . . . . . . . . . .T
L
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . T
pkg
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. T
J
= 25
o
C to T
J
= 125
o
C.
Electrical Specifications
PARAMETER
T
C
= 25
o
C, Unless Otherwise Specified
SYMBOL
BV
DSS
TEST CONDITIONS
I
D
= -250µA, V
GS
= 0V, (Figure10)
-200
-150
V
GS(TH)
I
DSS
V
GS
= V
DS
, I
D
= -250µA
V
DS
= Rated BV
DSS
, V
GS
= 0V
V
DS
= 0.8 x Rated BV
DSS
, V
GS
= 0V
T
C
= 125
o
C
-2
-
-
-
-
-
-
-
-
-
-4
-25
-250
V
V
V
µA
µA
MIN
TYP
MAX
UNITS
Drain to Source Breakdown Voltage
IRF9230, IRF9232
IRF9231, IRF9233
Gate Threshold Voltage
Zero Gate Voltage Drain Current
On-State Drain Current (Note 2)
IRF9230, IRF9231
IRF9232, IRF9233
Gate to Source Leakage Current
Drain to Source On Resistance (Note 2)
IRF9230, IRF9231
IRF9232, IRF9233
Forward Transconductance (Note 2)
I
D(ON)
V
DS
> I
D(ON)
x r
DS(ON) MAX
, V
GS
= -10V,
(Figure 7)
-6.5
-5.5
-
-
-
-
-
±100
A
A
nA
I
GSS
r
DS(ON)
V
GS
=
±20V
I
D
= -3.5A, V
GS
= -10V, (Figures 8, 9)
-
-
-
gfs
t
d(ON)
t
r
t
d(OFF)
t
f
Q
g(TOT)
Q
gs
Q
gd
V
DS
> I
D(ON)
x r
DS(ON) MAX
, I
D
= -3.5A,
(Figure 12)
V
DD
= 0.5 x Rated BV
DSS
, I
D
≈
-6.5A,
R
G
= 50Ω, V
GS
=
-
10V, (Figure 17, 18)
R
L
= 14.7Ω for V
DSS
= 200V
R
L
= 10.9Ω for V
DSS
= 150V
MOSFET Switching Times are Essentially
Independent of Operating Temperature
V
GS
= -10V, I
D
= -6.5A, V
DS
= 0.8 x Rated
BV
DSS,
(Figures 14, 19, 20)
Gate Charge is Essentially Independent
of Operating Temperature
2.2
0.5
0.8
3.5
0.8
1.2
-
Ω
Ω
S
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Gate Charge
(Gate to Source + Gate to Drain)
Gate to Source Charge
Gate to Drain “Miller” Charge
-
-
-
-
-
30
50
50
40
31
50
100
100
80
45
ns
ns
ns
ns
nC
-
-
18
13
-
-
nC
nC
6-2
IRF9230, IRF9231, IRF9232, IRF9233
Electrical Specifications
PARAMETER
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Internal Drain Inductance
T
C
= 25
o
C, Unless Otherwise Specified
(Continued)
SYMBOL
C
ISS
C
OSS
C
RSS
L
D
Measured Between the
Contact Screw on the
Flange that is Closer to
Source and Gate Pins
and the Center of Die
Measured From the
Source Lead, 6mm
(0.25in) From the
Flange and the Source
Bonding Pad
Modified MOSFET
Symbol Showing the
Internal Devices
Inductances
D
L
D
G
L
S
S
TEST CONDITIONS
V
DS
= -25V, V
GS
= 0V, f = 1MHz, (Figure 11)
MIN
-
-
-
-
TYP
550
170
50
5.0
MAX
-
-
-
-
UNITS
pF
pF
pF
nH
Internal Source Inductance
L
S
-
12.5
-
nH
Thermal Resistance Junction to Case
Thermal Resistance
Junction to Ambient
R
θJC
R
θJA
Typical Socket Mount
-
-
-
-
1.67
60
o
C/W
o
C/W
Source to Drain Diode Specifications
PARAMETER
Continuous Source to Drain Current
Pulse Source to Drain Current
(Note 3)
SYMBOL
I
SD
I
SDM
TEST CONDITIONS
Modified MOSFET
Symbol Showing the
Integral Reverse
P-N Junction Diode
G
D
MIN
-
-
TYP
-
-
MAX
-6.5
-26
UNITS
A
A
S
Source to Drain Diode Voltage
(Note 2)
Reverse Recovery Time
Reverse Recovery Charge
NOTES:
V
SD
t
rr
Q
RR
T
C
= 25
o
C, I
SD
= -6.5A, V
GS
= 0V,
(Figure 13)
T
J
= 150
o
C, I
SD
= -6.5A, dI
SD
/dt = 100A/µs
T
J
= 150
o
C, I
SD
= -6.5A, dI
SD
/dt = 100A/µs
-
-
-
-
400
2.6
-1.5
-
-
V
ns
µC
2. Pulse test: pulse width
≤
300µs, duty cycle
≤
2%.
3. Repetitive rating: pulse width limited by maximum junction temperature. See Transient Thermal Impedance curve (Figure 3).
4. V
DD
= 50V, starting T
J
= 25
o
C, L = 17.75mH, R
G
= 25Ω, peak I
AS
= 6.5A (Figures 15, 16).
6-3
IRF9230, IRF9231, IRF9232, IRF9233
Typical Performance Curves
1.2
POWER DISSIPATION MULTIPLIER
1.0
0.8
I
D
, DRAIN CURRENT (A)
Unless Otherwise Specified
-10
-8
-6
IRF9230, IRF9231
0.6
0.4
-4
IRF9232, IRF9233
-2
0.2
0.0
0
25
50
75
100
T
A
, CASE TEMPERATURE (
o
C)
125
150
0
25
50
75
100
125
150
T
C
, CASE TEMPERATURE (
o
C)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
Z
θJC
, NORMALIZED TRANSIENT
THERMAL IMPEDANCE (
o
C/W)
1
0.5
0.2
0.1
0.1
0.05
0.02
0.01
SINGLE PULSE
P
DM
0.01
10
-5
NOTES:
DUTY FACTOR: D = t
1
/t
2
PEAK T
J
= P
DM
x Z
θJC
x R
θJC
+ T
C
10
-3
10
-2
10
-1
1
10
t
1
t
2
10
-4
t
1
, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE