D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
FDD45AN06LA0
February 2004
FDD45AN06LA0
N-Channel PowerTrench
®
MOSFET
60V, 22A, 45mΩ
Features
• r
DS(ON)
= 39mΩ (Typ.), V
GS
= 5V, I
D
= 22A
• Q
g
(tot) = 8.3nC (Typ.), V
GS
= 5V
• Low Miller Charge
• Low Q
RR
Body Diode
• UIS Capability (Single Pulse and Repetitive Pulse)
• Qualified to AEC Q101
Formerly developmental type 83535
Applications
• Motor / Body Load Control
• ABS Systems
• Powertrain Management
• Injection Systems
• DC-DC converters and Off-line UPS
• Distributed Power Architectures and VRMs
• Primary Switch for 12V and 24V systems
DRAIN (FLANGE)
D
GATE
SOURCE
G
TO-252AA
FDD SERIES
S
MOSFET Maximum Ratings
T
C
= 25°C unless otherwise noted
Symbol
V
DSS
V
GS
Drain to Source Voltage
Gate to Source Voltage
Drain Current
Continuous (T
C
= 25
o
C, V
GS
= 10V)
I
D
Continuous (T
C
= 25 C, V
GS
= 5V)
Continuous (T
C
= 100 C, V
GS
= 5V)
Continuous (T
A
= 25 C, V
GS
= 5V, R
θJA
= 52 C/W)
Pulsed
E
AS
P
D
T
J
, T
STG
Single Pulse Avalanche Energy (Note 1)
Power dissipation
Derate above 25 C
Operating and Storage Temperature
o
o
o
o
o
Parameter
Ratings
60
±20
25
22
16
5.2
Figure 4
15
55
0.37
-55 to 175
Units
V
V
A
A
A
A
A
mJ
W
W/
o
C
o
C
Thermal Characteristics
R
θJC
R
θJA
R
θJA
Thermal Resistance Junction to Case TO-252
Thermal Resistance Junction to Ambient TO-252
Thermal Resistance Junction to Ambient TO-252, 1in copper pad area
2
2.73
100
52
o
o
o
C/W
C/W
C/W
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems
certificatio
n.
©2004 Fairchild Semiconductor Corporation
FDD45AN06LA0 Rev. A
FDD45AN06LA0
Package Marking and Ordering Information
Device Marking
FDD45AN06LA0
Device
FDD45AN06LA0
Package
TO-252AA
Reel Size
330mm
Tape Width
16mm
Quantity
2500 units
Electrical Characteristics
T
C
= 25°C unless otherwise noted
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
Off Characteristics
B
VDSS
I
DSS
I
GSS
Drain to Source Breakdown Voltage
Zero Gate Voltage Drain Current
Gate to Source Leakage Current
I
D
= 250µA, V
GS
= 0V
V
DS
= 50V
V
GS
= 0V
V
GS
=
±20V
T
C
= 150 C
o
60
-
-
-
-
-
-
-
-
1
250
±100
V
µA
nA
On Characteristics
V
GS(TH)
Gate to Source Threshold Voltage
V
GS
= V
DS
, I
D
= 250µA
I
D
= 25A, V
GS
= 10V
r
DS(ON)
Drain to Source On Resistance
I
D
= 22A, V
GS
= 5V
I
D
= 22A, V
GS
= 5V,
T
J
= 175
o
C
1
-
-
-
-
0.031
0.039
0.090
3
0.036
0.045
0.104
Ω
V
Dynamic Characteristics
C
ISS
C
OSS
C
RSS
Q
g(TOT)
Q
g(TH)
Q
gs
Q
gs2
Q
gd
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Total Gate Charge at 5V
Threshold Gate Charge
Gate to Source Gate Charge
Gate Charge Threshold to Plateau
Gate to Drain “Miller” Charge
V
DS
= 25V, V
GS
= 0V,
f = 1MHz
V
GS
= 0V to 5V
V
GS
= 0V to 1V
V
DD
= 30V
I
D
= 22A
I
g
= 1.0mA
-
-
-
-
-
-
-
880
90
40
8.3
0.9
2.8
1.9
3.4
-
-
-
11
1.2
-
-
-
pF
pF
pF
nC
nC
nC
nC
nC
Switching Characteristics
(V
GS
= 5V)
t
ON
t
d(ON)
t
r
t
d(OFF)
t
f
t
OFF
Turn-On Time
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-Off Time
V
DD
= 30V, I
D
= 22A
V
GS
= 5V, R
GS
= 18Ω
-
-
-
-
-
-
-
22
68
21
28
-
135
-
-
-
-
73
ns
ns
ns
ns
ns
ns
Drain-Source Diode Characteristics
V
SD
t
rr
Q
RR
Source to Drain Diode Voltage
Reverse Recovery Time
Reverse Recovered Charge
I
SD
= 22A
I
SD
= 11A
I
SD
= 22A, dI
SD
/dt = 100A/µs
I
SD
= 22A, dI
SD
/dt = 100A/µs
-
-
-
-
-
-
-
-
1.25
1.0
33
25
V
V
ns
nC
Notes:
1:
Starting T
J
= 25°C, L = 90µH, I
AS
= 18A.
©2004 Fairchild Semiconductor Corporation
FDD45AN06LA0 Rev. A
FDD45AN06LA0
Typical Characteristics
T
C
= 25°C unless otherwise noted
1.2
30
V
GS
= 10V
POWER DISSIPATION MULTIPLIER
1.0
I
D
, DRAIN CURRENT (A)
24
0.8
18
V
GS
= 5V
0.6
12
0.4
0.2
6
0
0
25
50
75
100
125
150
175
T
C
, CASE TEMPERATURE (
o
C)
0
25
50
75
100
125
150
175
T
C
, CASE TEMPERATURE (
o
C)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
2
1
THERMAL IMPEDANCE
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
Figure 2. Maximum Continuous Drain Current vs
Case Temperature
Z
θJC
, NORMALIZED
P
DM
0.1
t
1
t
2
SINGLE PULSE
NOTES:
DUTY FACTOR: D = t
1
/t
2
PEAK T
J
= P
DM
x Z
θJC
x R
θJC
+ T
C
10
-3
10
-2
10
-1
10
0
10
1
0.01
10
-5
10
-4
t , RECTANGULAR PULSE DURATION (s)
Figure 3. Normalized Maximum Transient Thermal Impedance
200
T
C
= 25
o
C
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
100
V
GS
= 10V
FOR TEMPERATURES
ABOVE 25
o
C DERATE PEAK
CURRENT AS FOLLOWS:
I = I
25
175 - T
C
150
I
DM
, PEAK CURRENT (A)
V
GS
= 5V
20
10
-5
10
-4
10
-3
10
-2
t, PULSE WIDTH (s)
10
-1
10
0
10
1
Figure 4. Peak Current Capability
©2004 Fairchild Semiconductor Corporation
FDD45AN06LA0 Rev. A
FDD45AN06LA0
Typical Characteristics
T
C
= 25°C unless otherwise noted
100
10µs
100µs
10
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY r
DS(ON)
1
DC
SINGLE PULSE
T
J
= MAX RATED
T
C
= 25
o
C
0.1
1
10
V
DS
, DRAIN TO SOURCE VOLTAGE (V)
100
I
AS
, AVALANCHE CURRENT (A)
I
D
, DRAIN CURRENT (A)
100
If R = 0
t
AV
= (L)(I
AS
)/(1.3*RATED BV
DSS
- V
DD
)
If R
≠
0
t
AV
= (L/R)ln[(I
AS
*R)/(1.3*RATED BV
DSS
- V
DD
) +1]
10
STARTING T
J
= 25
o
C
10ms
STARTING T
J
= 150
o
C
1
0.001
0.01
0.1
1
t
AV
, TIME IN AVALANCHE (ms)
10
Figure 5. Forward Bias Safe Operating Area
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 6. Unclamped Inductive Switching
Capability
40
40
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
V
DD
= 15V
I
D
, DRAIN CURRENT (A)
30
T
J
=
20
25
o
C
I
D
, DRAIN CURRENT (A)
V
GS
= 10V
V
GS
= 5V
30
V
GS
= 3.5V
20
V
GS
= 3V
10
T
C
= 25
o
C
0
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
10
T
J
= 175
o
C
T
J
= -55
o
C
0
2
3
4
5
V
GS
, GATE TO SOURCE VOLTAGE (V)
0
0.5
1.0
1.5
2.0
V
DS
, DRAIN TO SOURCE VOLTAGE (V)
Figure 7. Transfer Characteristics
80
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
r
DS(ON)
, DRAIN TO SOURCE
ON RESISTANCE (mΩ)
2.5
Figure 8. Saturation Characteristics
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
2.0
60
I
D
= 25A
1.5
1.0
40
I
D
= 1A
0.5
V
GS
= 10V, I
D
= 25A
20
2
4
6
8
10
V
GS
, GATE TO SOURCE VOLTAGE (V)
0
-80
-40
0
40
80
120
(
o
C)
160
200
T
J
, JUNCTION TEMPERATURE
Figure 9. Drain to Source On Resistance vs Gate
Voltage and Drain Current
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
©2004 Fairchild Semiconductor Corporation
FDD45AN06LA0 Rev. A