PD - 95194A
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
• Low VCE (on) Non Punch Through IGBT
Technology.
• Low Diode VF.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Ultrasoft Diode Reverse Recovery Characteristics.
• Positive VCE (on) Temperature Coefficient.
• Lead-Free
C
IRGB15B60KDPbF
IRGS15B60KDPbF
IRGSL15B60KDPbF
V
CES
= 600V
I
C
= 15A, T
C
=100°C
G
E
t
sc
> 10µs, T
J
=150°C
n-channel
V
CE(on)
typ. = 1.8V
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-220AB
D
2
Pak
IRGS15B60KDPbF
Absolute Maximum Ratings
Parameter
V
CES
I
C
@ T
C
= 25°C
I
C
@ T
C
= 100°C
I
CM
I
LM
I
F
@ T
C
= 25°C
I
F
@ T
C
= 100°C
I
FM
V
GE
P
D
@ T
C
= 25°C
P
D
@ T
C
= 100°C
T
J
T
STG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Diode Continuous Forward Current
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
IRGB15B60KDPbF
TO-262
IRGSL15B60KDPbF
Max.
600
31
15
62
62
31
15
64
± 20
208
83
-55 to +150
300 (0.063 in. (1.6mm) from case)
Units
V
A
V
W
°C
Thermal Resistance
Parameter
R
θJC
R
θJC
R
θCS
R
θJA
R
θJA
Wt
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Junction-to-Ambient (PCB Mount, steady state)
Weight
Min.
–––
–––
–––
–––
–––
–––
Typ.
–––
–––
0.50
–––
–––
1.44
Max.
0.6
2.1
–––
62
40
–––
Units
°C/W
g
www.irf.com
10/03/05
1
IRGB/S/SL15B60KDPbF
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
V
(BR)CES
∆V
(BR)CES
/∆T
J
V
CE(on)
Parameter
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation Voltage
V
GE(th)
∆
V
GE(th)
/
∆
T
J
g
fe
I
CES
V
FM
I
GES
Min.
600
–––
1.5
–––
–––
Gate Threshold Voltage
3.5
Temperature Coeff. of Threshold Voltage –––
Forward Transconductance
–––
Zero Gate Voltage Collector Current
–––
–––
Diode Forward Voltage Drop
–––
–––
Gate-to-Emitter Leakage Current
–––
Typ.
–––
0.3
1.80
2.05
2.10
4.5
-10
10.6
5.0
500
1.20
1.20
–––
Max. Units
Conditions
–––
V
V
GE
= 0V, I
C
= 500µA
––– V/°C V
GE
= 0V, I
C
= 1.0mA, (25°C-150°C)
2.20
I
C
= 15A, V
GE
= 15V
2.50
V
I
C
= 15A, V
GE
= 15V
T
J
= 125°C
2.60
I
C
= 15A, V
GE
= 15V
T
J
= 150°C
5.5
V
V
CE
= V
GE
, I
C
= 250µA
––– mV/°C V
CE
= V
GE
, I
C
= 1.0mA, (25°C-150°C)
–––
S
V
CE
= 50V, I
C
= 20A, PW=80µs
150
µA
V
GE
= 0V, V
CE
= 600V
1000
V
GE
= 0V, V
CE
= 600V, T
J
= 150°C
1.45
I
C
= 15A
1.45
V
I
C
= 15A
T
J
= 150°C
±100 nA
V
GE
= ±20V
Ref.Fig.
5, 6,7
9, 10,11
9, 10,11
12
8
Switching Characteristics @ T
J
= 25°C (unless otherwise specified)
Qg
Qge
Qgc
E
on
E
off
E
tot
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
tot
t
d(on)
t
r
t
d(off)
t
f
C
ies
C
oes
C
res
RBSOA
SCSOA
Erec
t
rr
I
rr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Reverse Bias Safe Operting Area
Short Circuit Safe Operting Area
Reverse Recovery energy of the diode
Diode Reverse Recovery time
Diode Peak Reverse Recovery Current
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Ref.Fig.
Max. Units
Conditions
84
I
C
= 15A
10
nC V
CC
= 400V
CT1
39
V
GE
= 15V
CT4
330
µJ
I
C
= 15A, V
CC
= 400V
455
V
GE
= 15V,R
G
= 22Ω, L = 200µH
785
Ls = 150nH
T
J
= 25°C
44
I
C
= 15A, V
CC
= 400V
22
V
GE
= 15V, R
G
= 22Ω, L = 200µH
CT4
200
ns
Ls = 150nH, T
J
= 25°C
26
CT4
470
I
C
= 15A, V
CC
= 400V
13,15
600
µJ
V
GE
= 15V,R
G
= 22Ω, L = 200µH
WF1WF2
1070
Ls = 150nH
T
J
= 150°C
14, 16
44
I
C
= 15A, V
CC
= 400V
25
V
GE
= 15V, R
G
= 22Ω, L = 200µH
CT4
226
ns
Ls = 150nH, T
J
= 150°C
WF1
36
WF2
–––
V
GE
= 0V
–––
pF
V
CC
= 30V
–––
f = 1.0MHz
4
T
J
= 150°C, I
C
= 62A, Vp =600V
FULL SQUARE
V
CC
= 500V, V
GE
= +15V to 0V,R
G
= 22Ω
CT2
CT3
µs
T
J
= 150°C, Vp =600V,R
G
= 22Ω
10 ––– –––
WF4
V
CC
= 360V, V
GE
= +15V to 0V
17,18,19
––– 540 720
µJ
T
J
= 150°C
20,21
––– 92 111
ns
V
CC
= 400V, I
F
= 15A, L = 200µH
CT4,WF3
––– 29
33
A
V
GE
= 15V,R
G
= 22Ω, Ls = 150nH
Typ.
56
7.0
26
220
340
560
34
16
184
20
355
490
835
34
18
203
28
850
75
35
Note
to
are on page 15
2
www.irf.com
IRGB/S/SL15B60KDPbF
35
30
25
240
200
160
Ptot (W)
0
20
40
60
80
100 120 140 160
IC (A)
20
15
10
5
0
T C (°C)
120
80
40
0
0
20
40
60
80
100 120 140 160
T C (°C)
8
Fig. 1
- Maximum DC Collector Current vs.
Case Temperature
Fig. 2
- Power Dissipation vs. Case
Temperature
100
100
10
IC (A)
10 µs
10
100 µs
1
DC
1ms
1
0.1
1
10
100
VCE (V)
1000
10000
IC A)
0
10
100
1000
VCE (V)
Fig. 3
- Forward SOA
T
C
= 25°C; T
J
≤
150°C
Fig. 4
- Reverse Bias SOA
T
J
= 150°C; V
GE
=15V
www.irf.com
3
IRGB/S/SL15B60KDPbF
100
90
80
70
ICE (A)
100
VGE
VGE
VGE
VGE
VGE
= 18V
= 15V
= 12V
= 10V
= 8.0V
ICE (A)
90
80
70
60
50
40
30
20
10
0
60
50
40
30
20
10
0
0
VGE
VGE
VGE
VGE
VGE
= 18V
= 15V
= 12V
= 10V
= 8.0V
1
2
3
VCE (V)
4
5
6
0
1
2
3
VCE (V)
4
5
6
Fig. 5
- Typ. IGBT Output Characteristics
T
J
= -40°C; tp = 300µs
Fig. 6
- Typ. IGBT Output Characteristics
T
J
= 25°C; tp = 300µs
100
90
80
70
ICE (A)
60
VGE
VGE
VGE
VGE
VGE
= 18V
= 15V
= 12V
= 10V
= 8.0V
IF (A)
50
40
30
20
10
0
-40°C
25°C
150°C
60
50
40
30
20
10
0
0
1
2
3
VCE (V)
4
5
6
0.0
0.5
1.0
1.5
VF (V)
2.0
2.5
3.0
Fig. 7
- Typ. IGBT Output Characteristics
T
J
= 150°C; tp = 300µs
Fig. 8
- Typ. Diode Forward Characteristics
tp = 80µs
4
www.irf.com
IRGB/S/SL15B60KDPbF
20
18
16
14
VCE (V)
VCE (V)
20
18
16
14
ICE = 5.0A
ICE = 15A
ICE = 30A
12
10
8
6
4
2
0
4
6
8
10
12
14
16
18
20
4
6
8
10
12
14
16
18
20
VGE (V)
VGE (V)
ICE = 5.0A
ICE = 15A
ICE = 30A
12
10
8
6
4
2
0
Fig. 9
- Typical V
CE
vs. V
GE
T
J
= -40°C
Fig. 10
- Typical V
CE
vs. V
GE
T
J
= 25°C
20
18
16
14
VCE (V)
ICE (A)
160
140
120
ICE = 5.0A
ICE = 15A
ICE = 30A
100
80
60
40
20
0
4
6
8
10
12
14
16
18
20
0
5
10
VGE (V)
15
20
VGE (V)
T J = 150°C
T J = 25°C
T J = 25°C
T J = 150°C
12
10
8
6
4
2
0
Fig. 11
- Typical V
CE
vs. V
GE
T
J
= 150°C
Fig. 12
- Typ. Transfer Characteristics
V
CE
= 50V; tp = 10µs
www.irf.com
5