PD - 95552B
Features
l
l
l
l
l
l
l
HEXFET
®
Power MOSFET
D
IRLR2908PbF
IRLU2908PbF
V
DSS
= 80V
R
DS(on)
= 28mΩ
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
G
S
I
D
= 30A
Description
This HEXFET ® Power MOSFET utilizes the latest processing techniques
to achieve extremely low on-resistance per silicon area. Additional features
of this HEXFET power MOSFET are a 175°C junction operating temperature,
low RθJC, fast switching speed and improved repetitive avalanche rating.
These features combine to make this design an extremely efficient and
reliable device for use in a wide variety of applications.
The D-Pak is designed for surface mounting using vapor phase, infrared,
or wave soldering techniques. The straight lead version (IRFU series) is
for through-hole mounting applications. Power dissipation levels up to 1.5
watts are possible in typical surface mount applications.
I-Pak
D-Pak
IRLU2908PbF
IRLR2908PbF
Absolute Maximum Ratings
Parameter
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
D
@ T
C
= 25°C
I
DM
P
D
@T
C
= 25°C
V
GS
E
AS
E
AS
(tested)
I
AR
E
AR
dv/dt
T
J
T
STG
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
Continuous Drain Current, V
GS
@ 10V (See Fig. 9)
Continuous Drain Current, V
GS
@ 10V
(Package Limited)
Pulsed Drain Current
Max.
39
28
30
150
120
0.77
± 16
180
250
See Fig.12a,12b,15,16
2.3
-55 to + 175
300 (1.6mm from case )
Units
A
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy (Thermally Limited)
Single Pulse Avalanche Energy Tested Value
W
W/°C
V
mJ
A
mJ
V/ns
°C
h
Peak Diode Recovery dv/dt
e
Repetitive Avalanche Energy
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Avalanche Current
i
d
Thermal Resistance
R
θJC
R
θJA
R
θJA
Parameter
Junction-to-Case
Junction-to-Ambient (PCB Mount)
Junction-to-Ambient
Typ.
Max.
1.3
40
110
Units
°C/W
jÃ
–––
–––
–––
www.irf.com
1
10/01/10
IRLR/U2908PbF
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
V
(BR)DSS
∆ΒV
DSS
/∆T
J
R
DS(on)
V
GS(th)
gfs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
oss
eff.
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
Internal Source Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min. Typ. Max. Units
80
–––
–––
–––
1.0
35
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
0.085
22.5
25
–––
–––
–––
–––
–––
–––
22
6.0
11
12
95
36
55
4.5
7.5
1890
260
35
1920
170
310
–––
–––
28
30
2.5
–––
20
250
200
-200
33
9.1
17
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
pF
nH
ns
nC
nA
V
S
µA
V
mΩ
Conditions
V
GS
= 0V, I
D
= 250µA
V
GS
= 10V, I
D
= 23A
V
GS
= 4.5V, I
D
V/°C Reference to 25°C, I
D
= 1mA
V
DS
= V
GS
, I
D
= 250µA
V
DS
= 25V, I
D
= 23A
V
DS
= 80V, V
GS
= 0V
f
= 20A
f
V
DS
= 80V, V
GS
= 0V, T
J
= 125°C
V
GS
= 16V
V
GS
= -16V
I
D
= 23A
V
DS
= 64V
V
GS
= 4.5V
V
DD
= 40V
I
D
= 23A
R
G
= 8.3Ω
V
GS
= 4.5V
Between lead,
6mm (0.25in.)
from package
and center of die contact
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0MHz, See Fig. 5
G
f
D
S
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 64V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 0V to 64V
Diode Characteristics
Parameter
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
–––
–––
–––
–––
–––
–––
–––
–––
75
210
39
A
150
1.3
110
310
V
ns
nC
Conditions
MOSFET symbol
showing the
integral reverse
G
S
D
Ã
p-n junction diode.
T
J
= 25°C, I
S
= 23A, V
GS
= 0V
T
J
= 25°C, I
F
= 23A, V
DD
= 25V
di/dt = 100A/µs
f
f
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes
through
are on page 11
HEXFET
®
is a registered trademark of International Rectifier.
2
www.irf.com
IRLR/U2908PbF
1000
TOP
VGS
15V
10V
4.5V
4.0V
3.5V
3.0V
2.7V
2.5V
1000
TOP
VGS
15V
10V
4.5V
4.0V
3.5V
3.0V
2.7V
2.5V
ID, Drain-to-Source Current (A)
100
ID, Drain-to-Source Current (A)
100
BOTTOM
10
BOTTOM
2.5V
1
10
2.5V
1
0.1
20µs PULSE WIDTH
Tj = 25°C
0.01
0.01
0.1
1
10
100
0.1
0.01
0.1
20µs PULSE WIDTH
Tj = 175°C
1
10
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
1000
60
G FS , Forward Transconductance (S)
ID, Drain-to-Source Current
(Α
)
50
40
30
20
10
0
0
TJ = 25°C
100
T J = 175°C
T J = 25°C
T J = 175°C
10
VDS = 25V
20µs PULSE WIDTH
1
2
3
4
5
VDS = 10V
20µs PULSE WIDTH
10
20
30
40
50
60
VGS , Gate-to-Source Voltage (V)
ID, Drain-to-Source Current (A)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Typical Forward Transconductance
vs. Drain Current
www.irf.com
3
IRLR/U2908PbF
100000
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
5.0
ID= 23A
VGS , Gate-to-Source Voltage (V)
4.0
VDS= 64V
VDS= 40V
VDS= 16V
10000
C, Capacitance(pF)
Ciss
1000
3.0
Coss
100
2.0
Crss
1.0
10
1
10
100
0.0
0
5
10
15
20
25
VDS, Drain-to-Source Voltage (V)
Q G Total Gate Charge (nC)
Fig 5.
Typical Capacitance vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge vs.
Gate-to-Source Voltage
1000.00
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100.00
T J = 175°C
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
100µsec
10
1msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
10.00
1.00
T J = 25°C
10msec
0.10
0.2
0.4
0.6
0.8
1.0
1.2
VGS = 0V
1.4
1.6
1.8
VSD, Source-to-Drain Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRLR/U2908PbF
40
35
30
ID, Drain Current (A)
RDS(on) , Drain-to-Source On Resistance
3.0
ID = 38A
2.5
VGS = 4.5V
25
20
15
10
5
0
25
50
75
100
125
150
175
T C , Case Temperature (°C)
2.0
(Normalized)
1.5
1.0
0.5
0.0
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 9.
Maximum Drain Current vs.
Case Temperature
Fig 10.
Normalized On-Resistance
vs. Temperature
10
Thermal Response ( Z thJC )
1
D = 0.50
0.20
0.10
0.1
0.05
0.02
0.01
P
DM
t
1
0.01
SINGLE PULSE
( THERMAL RESPONSE )
t
2
Notes:
1. Duty factor D =
2. Peak T
t
1
/ t
2
+T
C
J
= P
DM
x Z
thJC
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5