LM258, LM358, LM358A,
LM358E, LM2904, LM2904A,
LM2904E, LM2904V,
NCV2904
Single Supply Dual
Operational Amplifiers
Utilizing the circuit designs perfected for Quad Operational
Amplifiers, these dual operational amplifiers feature low power drain,
a common mode input voltage range extending to ground/V
EE
, and
single supply or split supply operation. The LM358 series is
equivalent to one−half of an LM324.
These amplifiers have several distinct advantages over standard
operational amplifier types in single supply applications. They can
operate at supply voltages as low as 3.0 V or as high as 32 V, with
quiescent currents about one−fifth of those associated with the
MC1741 (on a per amplifier basis). The common mode input range
includes the negative supply, thereby eliminating the necessity for
external biasing components in many applications. The output voltage
range also includes the negative power supply voltage.
Features
www.onsemi.com
8
1
PDIP−8
N, AN, VN SUFFIX
CASE 626
8
1
SOIC−8
D, VD SUFFIX
CASE 751
8
•
•
•
•
•
•
•
•
Short Circuit Protected Outputs
True Differential Input Stage
Single Supply Operation: 3.0 V to 32 V
Low Input Bias Currents
Internally Compensated
Common Mode Range Extends to Negative Supply
Single and Split Supply Operation
ESD Clamps on the Inputs Increase Ruggedness of the Device
without Affecting Operation
•
NCV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
•
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
1
Micro8]
DMR2 SUFFIX
CASE 846A
PIN CONNECTIONS
Output A
Inputs A
V
EE
/Gnd
1
2
3
4
8
−
+
7
V
CC
Output B
Inputs B
−
+
5
6
(Top View)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 10 of this data sheet.
DEVICE MARKING INFORMATION
See general marking information in the device marking
section on page 11 of this data sheet.
©
Semiconductor Components Industries, LLC, 2016
1
October, 2016 − Rev. 32
Publication Order Number:
LM358/D
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904
3.0 V to V
CC(max)
V
CC
1
2
V
EE
V
CC
1
2
1.5 V to V
EE(max)
V
EE
/Gnd
1.5 V to V
CC(max)
Single Supply
Figure 1.
Split Supplies
Output
Q15
Q16
Q14
Q13
Q19
5.0 pF
Q12
25
40 k
Bias Circuitry
Common to Both
Amplifiers
V
CC
Q22
Q24
Q23
Q18
Inputs
Q20
Q11
Q9
Q17
Q2
Q3
Q4
Q21
Q6
Q5
Q8
Q26
Q10
2.0 k
V
EE
/Gnd
Q7
Q1
Q25
2.4 k
Figure 2. Representative Schematic Diagram
(One−Half of Circuit Shown)
www.onsemi.com
2
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904
MAXIMUM RATINGS
(T
A
= +25°C, unless otherwise noted.)
Rating
Power Supply Voltages
Single Supply
Split Supplies
Input Differential Voltage Range (Note 1)
Input Common Mode Voltage Range
Output Short Circuit Duration
Junction Temperature
Thermal Resistance, Junction−to−Air (Note 2)
Case 846A
Case 751
Case 626
Symbol
V
CC
V
CC
, V
EE
V
IDR
V
ICR
t
SC
T
J
R
qJA
Value
32
±16
±32
−0.3 to 32
Continuous
150
238
212
161
−65 to +150
−25 to +85
0 to +70
−40 to +105
−40 to +125
°C
°C/W
Vdc
Vdc
Unit
Vdc
Storage Temperature Range
Operating Ambient Temperature Range
LM258
LM358, LM358A, LM358E
LM2904, LM2904A, LM2904E
LM2904V, NCV2904 (Note 3)
T
stg
T
A
°C
°C
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. Split Power Supplies.
2. All R
qJA
measurements made on evaluation board with 1 oz. copper traces of minimum pad size. All device outputs were active.
3.
NCV2904 is qualified for automotive use.
ESD RATINGS
Rating
ESD Protection at any Pin (Human Body Model − HBM, Machine Model − MM)
NCV2904 (Note 3)
LM358E, LM2904E
LM358DG/DR2G, LM2904DG/DR2G
All Other Devices
HBM
2000
2000
250
2000
MM
200
200
100
200
Unit
V
V
V
V
www.onsemi.com
3
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904
ELECTRICAL CHARACTERISTICS
(V
CC
= 5.0 V, V
EE
= GND, T
A
= 25°C, unless otherwise noted.)
LM258
Characteristic
Input Offset Voltage
V
CC
= 5.0 V to 30 V, V
IC
= 0 V to V
CC
−1.7 V,
V
O
]
1.4 V, R
S
= 0
W
T
A
= 25°C
T
A
= T
high
(Note 4)
T
A
= T
low
(Note 4)
Average Temperature Coefficient of Input Offset
Voltage
T
A
= T
high
to T
low
(Note 4)
Input Offset Current
T
A
= T
high
to T
low
(Note 4)
Input Bias Current
T
A
= T
high
to T
low
(Note 4)
Average Temperature Coefficient of Input Offset
Current
T
A
= T
high
to T
low
(Note 4)
Input Common Mode Voltage Range (Note 5),
V
CC
= 30 V
V
CC
= 30 V, T
A
= T
high
to T
low
Differential Input Voltage Range
Large Signal Open Loop Voltage Gain
R
L
= 2.0 kW, V
CC
= 15 V, For Large V
O
Swing,
T
A
= T
high
to T
low
(Note 4)
Channel Separation
1.0 kHz
≤
f
≤
20 kHz, Input Referenced
Common Mode Rejection
R
S
≤
10 kW
Power Supply Rejection
Output Voltage−High Limit
T
A
= T
high
to T
low
(Note 4)
V
CC
= 5.0 V, R
L
= 2.0 kW, T
A
= 25°C
V
CC
= 30 V, R
L
= 2.0 kW
V
CC
= 30 V, R
L
= 10 kW
Output Voltage−Low Limit
V
CC
= 5.0 V, R
L
= 10 kW,
T
A
= T
high
to T
low
(Note 4)
Output Source Current
V
ID
= +1.0 V, V
CC
= 15 V
T
A
= T
high
to T
low
(LM358A Only)
Output Sink Current
V
ID
= −1.0 V, V
CC
= 15 V
T
A
= T
high
to T
low
(LM358A Only)
V
ID
= −1.0 V, V
O
= 200 mV
Output Short Circuit to Ground (Note 6)
Power Supply Current (Total Device)
T
A
= T
high
to T
low
(Note 4)
V
CC
= 30 V, V
O
= 0 V, R
L
=
∞
V
CC
= 5 V, V
O
= 0 V, R
L
=
∞
Symbol
V
IO
Min
Typ
Max
LM358, LM358E
Min
Typ
Max
Min
LM358A
Typ
Max
Unit
mV
−
−
−
DV
IO
/DT
−
2.0
−
−
7.0
5.0
7.0
7.0
−
−
−
−
−
2.0
−
−
7.0
7.0
9.0
9.0
−
−
−
−
−
2.0
−
−
7.0
3.0
5.0
5.0
−
mV/°C
I
IO
I
IB
DI
IO
/DT
−
−
−
−
−
3.0
−
−45
−50
10
30
100
−150
−300
−
−
−
−
−
−
5.0
−
−45
−50
10
50
150
−250
−500
−
−
−
−
−
−
5.0
−
−45
−50
10
30
75
−100
−200
−
nA
pA/°C
V
ICR
0
0
−
−
−
100
−
−120
85
28.3
28
V
CC
−
−
−
−
0
0
−
25
15
−
65
−
−
−
100
−
−120
70
28.3
28
V
CC
−
−
−
−
0
0
−
25
15
−
65
−
−
−
100
−
−120
70
28.5
28
V
CC
−
−
−
−
V
V
IDR
A
VOL
−
50
25
V
V/mV
CS
CMR
−
70
dB
dB
PSR
V
OH
65
100
−
65
100
−
65
100
−
dB
V
3.3
26
27
V
OL
−
3.5
−
28
5.0
−
−
−
20
3.3
26
27
−
3.5
−
28
5.0
−
−
−
20
3.3
26
27
−
3.5
−
28
5.0
−
−
−
20
mV
I
O +
20
I
O −
10
12
I
SC
I
CC
−
−
1.5
0.7
3.0
1.2
−
−
1.5
0.7
3.0
1.2
−
−
1.5
0.7
2.0
1.2
−
20
50
40
−
−
60
10
12
−
20
50
40
−
−
60
10
5.0
12
−
20
−
50
40
−
−
−
60
40
−
20
40
−
20
10
40
−
−
−
mA
mA
mA
mA
mA
mA
4. LM258: T
low
= −25°C, T
high
= +85°C
LM358, LM358A, LM358E: T
low
= 0°C, T
high
= +70°C
LM2904V & NCV2904: T
low
= −40°C, T
high
= +125°C
LM2904/A/E: T
low
= −40°C, T
high
= +105°C
NCV2904 is qualified for automotive use.
5. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of
the common mode voltage range is V
CC
− 1.7 V.
6. Short circuits from the output to V
CC
can cause excessive heating and eventual destruction. Destructive dissipation can result from
simultaneous shorts on all amplifiers.
www.onsemi.com
4
LM258, LM358, LM358A, LM358E, LM2904, LM2904A, LM2904E, LM2904V, NCV2904
ELECTRICAL CHARACTERISTICS
(V
CC
= 5.0 V, V
EE
= Gnd, T
A
= 25°C, unless otherwise noted.)
LM2904/LM2904E
Characteristic
Input Offset Voltage
V
CC
= 5.0 V to 30 V, V
IC
= 0 V to V
CC
−1.7 V,
V
O
]
1.4 V, R
S
= 0
W
T
A
= 25°C
T
A
= T
high
(Note 7)
T
A
= T
low
(Note 7)
Average Temperature Coefficient of Input Offset
Voltage
T
A
= T
high
to T
low
(Note 7)
Input Offset Current
T
A
= T
high
to T
low
(Note 7)
Input Bias Current
T
A
= T
high
to T
low
(Note 7)
Average Temperature Coefficient of Input Offset
Current
T
A
= T
high
to T
low
(Note 7)
Input Common Mode Voltage Range (Note 8),
V
CC
= 30 V
V
CC
= 30 V, T
A
= T
high
to T
low
Differential Input Voltage Range
Large Signal Open Loop Voltage Gain
R
L
= 2.0 kW, V
CC
= 15 V, For Large V
O
Swing,
T
A
= T
high
to T
low
(Note 7)
Channel Separation
1.0 kHz
≤
f
≤
20 kHz, Input Referenced
Common Mode Rejection
R
S
≤
10 kW
Power Supply Rejection
Output Voltage−High Limit
T
A
= T
high
to T
low
(Note 7)
V
CC
= 5.0 V, R
L
= 2.0 kW, T
A
= 25°C
V
CC
= 30 V, R
L
= 2.0 kW
V
CC
= 30 V, R
L
= 10 kW
Output Voltage−Low Limit
V
CC
= 5.0 V, R
L
= 10 kW,
T
A
= T
high
to T
low
(Note 7)
Output Source Current
V
ID
= +1.0 V, V
CC
= 15 V
Output Sink Current
V
ID
= −1.0 V, V
CC
= 15 V
V
ID
= −1.0 V, V
O
= 200 mV
Output Short Circuit to Ground (Note 9)
Power Supply Current (Total Device)
T
A
= T
high
to T
low
(Note 7)
V
CC
= 30 V, V
O
= 0 V, R
L
=
∞
V
CC
= 5 V, V
O
= 0 V, R
L
=
∞
Symbol
V
IO
Min
Typ
Max
Min
LM2904A
Typ
Max
LM2904V, NCV2904
Min
Typ
Max
Unit
mV
−
−
−
DV
IO
/DT
−
2.0
−
−
7.0
7.0
10
10
−
−
−
−
−
2.0
−
−
7.0
7.0
10
10
−
−
−
−
−
−
−
−
7.0
7.0
13
10
−
mV/°C
I
IO
I
IB
DI
IO
/DT
−
−
−
−
−
5.0
45
−45
−50
10
50
200
−250
−500
−
−
−
−
−
−
5.0
45
−45
−50
10
50
200
−100
−250
−
−
−
−
−
−
5.0
45
−45
−50
10
50
200
−250
−500
−
nA
pA/°C
V
ICR
0
0
−
−
−
100
−
−120
70
28.3
28
V
CC
−
−
−
−
0
0
−
25
15
−
50
−
−
−
100
−
−120
70
28.3
28
V
CC
−
−
−
−
0
0
−
25
15
−
50
−
−
−
100
−
−120
70
28.3
28
V
CC
−
−
−
−
V
V
IDR
A
VOL
−
25
15
V
V/mV
CS
CMR
−
50
dB
dB
PSR
V
OH
50
100
−
50
100
−
50
100
−
dB
V
3.3
26
27
V
OL
−
3.5
−
28
5.0
−
−
−
20
3.3
26
27
−
3.5
−
28
5.0
−
−
−
20
3.3
26
27
−
3.5
−
28
5.0
−
−
−
20
mV
I
O +
I
O −
20
40
−
20
40
−
20
40
−
mA
10
−
I
SC
I
CC
−
−
−
20
−
40
−
−
60
10
−
−
20
−
40
−
−
60
10
−
−
20
−
40
−
−
60
mA
mA
mA
mA
1.5
0.7
3.0
1.2
−
−
1.5
0.7
3.0
1.2
−
−
1.5
0.7
3.0
1.2
7. LM258: T
low
= −25°C, T
high
= +85°C
LM358, LM358A, LM358E: T
low
= 0°C, T
high
= +70°C
LM2904V & NCV2904: T
low
= −40°C, T
high
= +125°C
LM2904/A/E: T
low
= −40°C, T
high
= +105°C
NCV2904 is qualified for automotive use.
8. The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of
the common mode voltage range is V
CC
− 1.7 V.
9. Short circuits from the output to V
CC
can cause excessive heating and eventual destruction. Destructive dissipation can result from
simultaneous shorts on all amplifiers.
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
www.onsemi.com
5