P2N2222A
Amplifier Transistors
NPN Silicon
Features
•
These are Pb−Free Devices*
MAXIMUM RATINGS
(T
A
= 25°C unless otherwise noted)
Characteristic
Collector
−Emitter
Voltage
Collector
−Base
Voltage
Emitter−Base Voltage
Collector Current
−
Continuous
Total Device Dissipation @ T
A
= 25°C
Derate above 25°C
Total Device Dissipation @ T
C
= 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range
Symbol
V
CEO
V
CBO
V
EBO
I
C
P
D
P
D
T
J
, T
stg
Value
40
75
6.0
600
625
5.0
1.5
12
−55
to
+150
Unit
Vdc
Vdc
Vdc
mAdc
mW
mW/°C
W
mW/°C
°C
TO−92
CASE 29
STYLE 17
http://onsemi.com
COLLECTOR
1
2
BASE
3
EMITTER
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case
Symbol
R
qJA
R
qJC
Max
200
83.3
Unit
°C/W
°C/W
3
STRAIGHT LEAD
BULK PACK
12
1
3
BENT LEAD
TAPE & REEL
AMMO PACK
2
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
MARKING DIAGRAM
P2N2
222A
AYWW
G
G
A
= Assembly Location
Y
= Year
WW = Work Week
G
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
Device
P2N2222AG
P2N2222ARL1G
Package
TO−92
(Pb−Free)
TO−92
(Pb−Free)
Shipping
†
5000 Units/Bulk
2000/Tape & Ammo
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
©
Semiconductor Components Industries, LLC, 2013
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
Publication Order Number:
P2N2222A/D
January, 2013
−
Rev. 7
1
P2N2222A
ELECTRICAL CHARACTERISTICS
(T
A
= 25°C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
Collector
−Emitter
Breakdown Voltage
(I
C
= 10 mAdc, I
B
= 0)
Collector
−Base
Breakdown Voltage
(I
C
= 10
mAdc,
I
E
= 0)
Emitter−Base Breakdown Voltage
(I
E
= 10
mAdc,
I
C
= 0)
Collector Cutoff Current
(V
CE
= 60 Vdc, V
EB(off)
= 3.0 Vdc)
Collector Cutoff Current
(V
CB
= 60 Vdc, I
E
= 0)
(V
CB
= 60 Vdc, I
E
= 0, T
A
= 150°C)
Emitter Cutoff Current
(V
EB
= 3.0 Vdc, I
C
= 0)
Collector Cutoff Current
(V
CE
= 10 V)
Base Cutoff Current
(V
CE
= 60 Vdc, V
EB(off)
= 3.0 Vdc)
ON CHARACTERISTICS
DC Current Gain
(I
C
= 0.1 mAdc, V
CE
= 10 Vdc)
(I
C
= 1.0 mAdc, V
CE
= 10 Vdc)
(I
C
= 10 mAdc, V
CE
= 10 Vdc)
(I
C
= 10 mAdc, V
CE
= 10 Vdc, T
A
=
−55°C)
(I
C
= 150 mAdc, V
CE
= 10 Vdc) (Note 1)
(I
C
= 150 mAdc, V
CE
= 1.0 Vdc) (Note 1)
(I
C
= 500 mAdc, V
CE
= 10 Vdc) (Note 1)
Collector
−Emitter
Saturation Voltage (Note 1)
(I
C
= 150 mAdc, I
B
= 15 mAdc)
(I
C
= 500 mAdc, I
B
= 50 mAdc)
Base
−Emitter
Saturation Voltage (Note 1)
(I
C
= 150 mAdc, I
B
= 15 mAdc)
(I
C
= 500 mAdc, I
B
= 50 mAdc)
SMALL−SIGNAL CHARACTERISTICS
Current
−Gain −
Bandwidth Product (Note 2)
(I
C
= 20 mAdc, V
CE
= 20 Vdc, f = 100 MHz)C
Output Capacitance
(V
CB
= 10 Vdc, I
E
= 0, f = 1.0 MHz)
Input Capacitance
(V
EB
= 0.5 Vdc, I
C
= 0, f = 1.0 MHz)
Input Impedance
(I
C
= 1.0 mAdc, V
CE
= 10 Vdc, f = 1.0 kHz)
(I
C
= 10 mAdc, V
CE
= 10 Vdc, f = 1.0 kHz)
Voltage Feedback Ratio
(I
C
= 1.0 mAdc, V
CE
= 10 Vdc, f = 1.0 kHz)
(I
C
= 10 mAdc, V
CE
= 10 Vdc, f = 1.0 kHz)
Small−Signal Current Gain
(I
C
= 1.0 mAdc, V
CE
= 10 Vdc, f = 1.0 kHz)
(I
C
= 10 mAdc, V
CE
= 10 Vdc, f = 1.0 kHz)
Output Admittance
(I
C
= 1.0 mAdc, V
CE
= 10 Vdc, f = 1.0 kHz)
(I
C
= 10 mAdc, V
CE
= 10 Vdc, f = 1.0 kHz)
Collector Base Time Constant
(I
E
= 20 mAdc, V
CB
= 20 Vdc, f = 31.8 MHz)
Noise Figure
(I
C
= 100
mAdc,
V
CE
= 10 Vdc, R
S
= 1.0 kW, f = 1.0 kHz)
1. Pulse Test: Pulse Width
v
300
ms,
Duty Cycle
v
2.0%.
2. f
T
is defined as the frequency at which |h
fe
| extrapolates to unity.
f
T
C
obo
C
ibo
h
ie
300
−
−
2.0
0.25
−
−
50
75
5.0
25
−
−
−
8.0
25
8.0
1.25
8.0
4.0
300
375
35
200
150
4.0
MHz
pF
pF
kW
h
FE
35
50
75
35
100
50
40
−
−
0.6
−
−
−
−
−
300
−
−
0.3
1.0
1.2
2.0
−
V
(BR)CEO
V
(BR)CBO
V
(BR)EBO
I
CEX
I
CBO
40
75
−
−
−
10
0.01
10
10
Vdc
Vdc
Vdc
nAdc
mAdc
Symbol
Min
Max
Unit
6.0
−
−
−
−
−
−
I
EBO
I
CEO
I
BEX
nAdc
nAdc
nAdc
10
20
V
CE(sat)
Vdc
V
BE(sat)
Vdc
h
re
X 10
−
4
h
fe
−
h
oe
mMhos
rb′C
c
N
F
ps
dB
http://onsemi.com
2
P2N2222A
ELECTRICAL CHARACTERISTICS
(T
A
= 25°C unless otherwise noted) (Continued)
Characteristic
SWITCHING CHARACTERISTICS
Delay Time
Rise Time
Storage Time
Fall Time
(V
CC
= 30 Vdc, V
BE(off)
=
−2.0
Vdc,
I
C
= 150 mAdc, I
B1
= 15 mAdc) (Figure 1)
(V
CC
= 30 Vdc, I
C
= 150 mAdc,
I
B1
= I
B2
= 15 mAdc) (Figure 2)
t
d
t
r
t
s
t
f
−
−
−
−
10
25
225
60
ns
ns
ns
ns
Symbol
Min
Max
Unit
SWITCHING TIME EQUIVALENT TEST CIRCUITS
+ 30 V
+16 V
0
-2 V
1.0 to 100
ms,
DUTY CYCLE
≈
2.0%
1 kW
< 2 ns
200
+16 V
0
C
S
* < 10 pF
-14 V
< 20 ns
1k
1N914
-4 V
C
S
* < 10 pF
1.0 to 100
ms,
DUTY CYCLE
≈
2.0%
+ 30 V
200
Scope rise time < 4 ns
*Total shunt capacitance of test jig,
connectors, and oscilloscope.
Figure 1. Turn−On Time
Figure 2. Turn−Off Time
1000
700
500
hFE, DC CURRENT GAIN
300
200
T
J
= 125°C
25°C
100
70
50
30
20
10
0.1
-55°C
V
CE
= 1.0 V
V
CE
= 10 V
0.2
0.3
0.5 0.7
1.0
2.0
3.0
5.0 7.0 10
20 30
I
C
, COLLECTOR CURRENT (mA)
50
70
100
200
300
500 700 1.0 k
Figure 3. DC Current Gain
http://onsemi.com
3
P2N2222A
VCE , COLLECTOR-EMITTER VOLTAGE (VOLTS)
1.0
T
J
= 25°C
0.8
0.6
I
C
= 1.0 mA
10 mA
150 mA
500 mA
0.4
0.2
0
0.005
0.01
0.02 0.03
0.05
0.1
0.2
0.3
0.5
1.0
I
B
, BASE CURRENT (mA)
2.0
3.0
5.0
10
20
30
50
Figure 4. Collector Saturation Region
200
100
70
50
t, TIME (ns)
30
20
10
7.0
5.0
3.0
2.0
5.0 7.0
10
20 30
50 70 100
I
C
, COLLECTOR CURRENT (mA)
200 300
500
I
C
/I
B
= 10
T
J
= 25°C
t
r
@ V
CC
= 30 V
t
d
@ V
EB(off)
= 2.0 V
t
d
@ V
EB(off)
= 0
500
300
200
100
70
50
30
20
10
7.0
5.0
5.0 7.0 10
20 30
50 70 100
I
C
, COLLECTOR CURRENT (mA)
200
300
500
t′
s
= t
s
- 1/8 t
f
V
CC
= 30 V
I
C
/I
B
= 10
I
B1
= I
B2
T
J
= 25°C
t, TIME (ns)
t
f
Figure 5. Turn
−On
Time
Figure 6. Turn
−Off
Time
10
8.0
NF, NOISE FIGURE (dB)
I
C
= 1.0 mA, R
S
= 150
W
500
mA,
R
S
= 200
W
100
mA,
R
S
= 2.0 kW
50
mA,
R
S
= 4.0 kW
R
S
= OPTIMUM
R
S
=
SOURCE
R
S
=
RESISTANCE
10
f = 1.0 kHz
8.0
NF, NOISE FIGURE (dB)
I
C
= 50
mA
100
mA
500
mA
1.0 mA
6.0
6.0
4.0
4.0
2.0
2.0
0
0.01 0.02 0.05 0.1 0.2
0.5 1.0 2.0
5.0 10
20
50 100
0
50
100 200
500
1.0 k 2.0 k
5.0 k 10 k 20 k
50 k 100 k
f, FREQUENCY (kHz)
R
S
, SOURCE RESISTANCE (OHMS)
Figure 7. Frequency Effects
Figure 8. Source Resistance Effects
http://onsemi.com
4
P2N2222A
30
20
CAPACITANCE (pF)
C
eb
10
7.0
5.0
C
cb
3.0
2.0
0.1
0.2 0.3
0.5 0.7 1.0
2.0 3.0 5.0 7.0 10
REVERSE VOLTAGE (VOLTS)
20 30
50
f T, CURRENT-GAIN BANDWIDTH PRODUCT (MHz)
500
V
CE
= 20 V
T
J
= 25°C
300
200
100
70
50
1.0
2.0
3.0
5.0 7.0 10
20 30
I
C
, COLLECTOR CURRENT (mA)
50
70 100
Figure 9. Capacitances
Figure 10. Current−Gain Bandwidth Product
1.0
T
J
= 25°C
0.8
V
BE(sat)
@ I
C
/I
B
= 10
0.6
V
BE(on)
@ V
CE
= 10 V
0.4
1.0 V
COEFFICIENT (mV/
°
C)
V, VOLTAGE (VOLTS)
+0.5
0
- 0.5
- 1.0
- 1.5
- 2.0
V
CE(sat)
@ I
C
/I
B
= 10
- 2.5
R
qVB
for V
BE
R
qVC
for V
CE(sat)
0.2
0
0.1 0.2
50 100 200
0.5 1.0 2.0 5.0 10 20
I
C
, COLLECTOR CURRENT (mA)
500 1.0 k
0.1 0.2
0.5
1.0 2.0
5.0 10 20
50 100 200
I
C
, COLLECTOR CURRENT (mA)
500
Figure 11. “On” Voltages
Figure 12. Temperature Coefficients
http://onsemi.com
5