Philips Semiconductors Linear Products
Product specification
Dual general-purpose operational amplifier
NE/SA/SE4558
DESCRIPTION
The 4558 is a dual operational amplifier that is internally
compensated. Excellent channel separation allows the use of a dual
device in a single amp application, providing the highest packaging
density. The NE/SA/SE4558 is a pin-for-pin replacement for the
RC/RM/RV4558.
PIN CONFIGURATIONS
D and N Packages
A
OUT
1
A
IN–
2
A
IN+
3
V– 4
A
–+
B
+–
8
7
6
5
V+
B
OUT
B
IN–
B
IN+
FEATURES
•
2MHz unity gain bandwidth guaranteed
•
Supply voltage
±22V
for SE4558 and
±18V
for NE4558
•
Short-circuit protection
•
No frequency compensation required
•
No latch-up
•
Large common-mode and differential voltage ranges
•
Low power consumption
ORDERING INFORMATION
DESCRIPTION
8-Pin Plastic Small Outline (SO) Package
8-Pin Plastic Dual In-Line Package (DIP)
8-Pin Plastic Dual In-Line Package (DIP)
8-Pin Plastic Dual In-Line Package (DIP)
8-Pin Plastic Dual In-Line Package (DIP)
TEMPERATURE RANGE
0 to +70°C
0 to +70°C
-40 to +85°C
-40 to +85°C
-55 to +125°C
ORDER CODE
NE4558D
NE4558N
SA4558N
SA4558D
SE4558N
DWG #
0174C
0404B
0404B
0404B
0404B
EQUIVALENT SCHEMATIC
8
v
+
–
2(6)
INPUTS
3(5)
+
OUYPUT 1(7)
4 V
–
August 31, 1994
65
853-0840 13721
Philips Semiconductors Linear Products
Product specification
Dual general-purpose operational amplifier
NE/SA/SE4558
ABSOLUTE MAXIMUM RATINGS
SYMBOL
V
CC
Supply voltage
SE4558
NE4558, SA4558
P
D MAX
Maximum power dissipation,
T
A
=25°C (Still air)
1
N package
D package
Differential input voltage
V
IN
T
STG
T
A
Input
voltage
2
Storage temperature range
Operating ambient temperature range
SE4558
SA4558
NE4558
T
SOLD
Lead soldering temperature (10sec max)
Output short-circuit duration
3
-55 to +125
-40 to +85
0 to +70
300
Indefinite
°C
°C
°C
°C
1160
780
±30
±15
-65 to +150
mW
mW
V
V
°C
±22
±18
V
V
PARAMETER
RATING
UNIT
NOTES:
1. Derate above 25°C at the following rates:
N package at 9.3mW/°C
D package at 6.2mW/°C
2. For supply voltages less than
±15V,
the absolute maximum input voltage is equal to the supply voltage.
3. Short-circuit may be to ground on one amp only. Rating applies to +125°C case temperature or +75°C ambient temperature for NE4558 and
to +85°C ambient temperature for SA4558.
DC ELECTRICAL CHARACTERISTICS
V
CC
=
+
15V, TA= 25°C unless otherwise specified.
SYMBOL
V
OS
I
OS
I
BIAS
R
IN
A
V
PARAMETER
Input offset voltage
∆V
OS
/∆T
Input offset current
∆I
OS
/∆T
Input bias current
∆I
B
/∆T
Input resistance
Large-signal voltage gain
Output voltage swing
V
IN
CMRR
PSRR
I
SC
Input voltage range
Common-mode rejection ratio
Power supply rejection ratio
Short-circuit current
Power consumption (all amplifiers)
R
L
=∞
R
S
≤10kΩ
R
S
≤10kΩ
5
R
L
≥2kΩ
V
OUT
=±10V
R
L
≥10kΩ
R
L
≥2kΩ
Over temp.
0.3
50,00
0
±12
±10
±12
70
Over temp.
TEST CONDITIONS
R
S
≤10kΩ
Over temp.
SE4558
SA/NE4558
UNIT
mV
µV/°C
200
500
nA
pA/°C
nA
pA/°C
MΩ
V/V
V
V
V
dB
150
60
170
µV/V
mA
mW
Min
Typ
1.0
4
50
20
40
40
1.0
300,0
00
±14
±13
±13
100
10
25
120
Max
5.0
200
500
Min
Typ
2.0
4
30
20
200
40
Max
6.0
0.3
20,00
0
±12
±10
±12
70
150
60
170
5
1.0
300,0
00
±14
±13
±13
100
10
25
120
August 31, 1994
66
Philips Semiconductors Linear Products
Product specification
Dual general-purpose operational amplifier
NE/SA/SE4558
DC ELECTRICAL CHARACTERISTICS
(Continued)
SYMBOL
PARAMETER
TEST CONDITIONS
V
IN
=20mV
R
L
=2kΩ
C
L
≤100pF
100
15.0
R
L
≥2kΩ
f=10kHz
R
S
=1kΩ
2.0
1.0
90
3.0
45
f=1kΩ
25
2.0
100
15.0
1.0
90
3.0
45
25
ns
%
V/µs
dB
MHz
De-
gree
nV/√H
z
7.5
300/500
1
800/1500
1
SE4558
SA/NE4558
Min
Typ
Max
Min
Typ
Max
UNIT
Transient response (unity gain)
t
R
Rise time
Overshoot
SR
Slew rate (unity gain)
Channel separation (gain=100)
GBW
θ
M
V
NOISE
Unity gain bandwidth (gain=1)
Phase margin
Input noise voltage
NOTE:
The following specifications apply over operating temperature range.
V
OS
I
OS
I
BIAS
A
V
Input offset voltage
Input offset current
Input bias current
Large-signal voltage gain
Output voltage swing
P
C
Power consumption
R
L
≥2kΩ
V
OUT
=±10V
R
L
≥2kΩ
T
A
=HIGH
T
A
=LOW
25,000
±10
105
125
150
200
R
S
≤10kΩ
6.0
500
1500
15,000
±10
115
120
150
200
mV
nA
nA
V/V
V
mW
mW
NOTES:
1. SA4558 only.
August 31, 1994
67
Philips Semiconductors Linear Products
Product specification
Dual general-purpose operational amplifier
NE/SA/SE4558
TYPICAL PERFORMANCE CURVES
Input Bias as a
Function of Ambient
Temperature
100
INPUT BIAS CURRENT (
µ
A)
INPUT offset current (
µ
A)
V
S
= + 15V
80
60
40
20
0
0
10
20
30 40 50
60 70
TEMPERATURE (
o
C)
Input Offset Current as
as a Function of Ambient
Temperature
25
V
S
= + 15V
COMMON MODE
VOLTAGE RANGE (V)
20
15
10
5
0
0
10 20
30
40 50
60 70
TEMPERATURE (
o
C)
–15
–10
–5
0
5
10
15
Open–Loop Voltage Gain
as a Function of
Frequency
120
VOLTAGE GAIN (dB)
100
VOLTAGE GAIN
80
60
40
20
0
–20
1
0K
10 100 1K 10K 100K1K 10M
FREQUENCY (Hz)
0
600K
800K
Open–Loop Gain as a
Function of
Temperature
V = + 15V
V
S S
+ 15V
=
R
L
= 2KΩ
POWER CONSUMPTION (mV)
140
130
120
110
100
90
80
10
20
30 40 50
60
70
400K
200K
TEMPERATURE (
o
C)
Typical Output Voltage
as a Function of
Supply Voltage
T
A
= 25
o
C
Output Voltage Swing
as a Function of
Load Resistance)
28
26
OUTPUT SWING (V)
OUTPUT SWING (V)
PEAK TO PEAK
PEAK TO PEAK
24
22
20
18
16
14
12
10
8
0.1 0.2
T
A
= 25
o
C
V
S
= + 15V
40
36
32
28
24
20
18
12
8
15
10
5
OUTPUT SWING (V)
0
–5
–10
–15
R
L
= 2KΩ
6
8
4
10 12
14 16
18
0.5 1.0 2.0
5.0
10
SUPPLY VOLTAGE (V)
LOAD RESISTANCE (KΩ))
August 31, 1994
68
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
Common–Mode Range as
a Function of Supply
Voltage
T
A
= 25
o
C
4
6
8
10 12
14 16
18
SUPPLY VOLTAGE (V)
Power Consumption as
a Function of Ambient
Temperature
0
10 20 30
40 50
60 70
TEMPERATURE (
o
C)
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
ÇÇÇÇÇÇÇ
Output Voltage Swing
as a Function of
Frequency
V
S
= + 15V
T
A
= 25
o
C
R
L
= 25KΩ
4
0
100
1K
10K
100K
1M
FREQUENCY (Hz)
Philips Semiconductors Linear Products
Product specification
Dual general-purpose operational amplifier
NE/SA/SE4558
TYPICAL PERFORMANCE CURVES
(Continued)
Quiescent Current as a
Function of
Supply Voltage
6
QUIESCENT CURRENT (mA)
5
4
3
2
1
0
0
3
6
9
12
15
18
SUPPLY VOLTAGE (V)
T
A
= 2
5o
C
OUTPUT (mV)
28
24
20
16
12
8
4
10% RISE TIME
0
0
.25
.50
.75
1.0
1.25
90%
V
S
= + 15V
T
A
= 25
o
C
R
S
= 2KΩ
C
L
= 100pF
OUTPUT VOLTAGE
Transient Response
10
8
6
4
2
0
–2
–4
–6
–8
–10
Voltage–Follower
Large–Signal Pulse
Response
V
S
= + 15V
T
A
= 25
o
C
0 5 10
20
TIME (µS)
30
40
TIME (µS)
Input Noise Voltage as a Function
of Frequency
NOISE CURRENT (PA
√
Hz)
NOISE CURRENT (nV
√
Hz)
1000
V
S
= + 15V
100
T
A
= 25
o
C
R
S
= 50Ω
A
V
= 60dB
100
Input Noise Current as a Function
of Frequency
10
V
S
= + 15V
T = 25
o
C
R
S
= 100K
A
V
= 60dB
10
1
1
1
10
100
1K
10K
100K
0.1
1
10
100
1K
10K
100K
FREQUENCY (Hz)
FREQUENCY (Hz)
Channel Separation
TOTAL HARMONIC DISTROTION
ON (2) 1kHz (%)
CHANNEL SEPARATION (dB)
140
120
100
80
60
40
20
0
10
V
S
= +
15V
T
A
= 25
o
C
100
1K
FREQUENCY (Hz)
10K
100k
6
5
4
3
2
1
0
1
Total Harmonic Distortion vs
Output Voltage
TOTAL HARMONIC DISTORATION (%)
7
6
5
4
3
2
1
0
0
Distortion vs Frequency
V
O
= 1V
RMS
V
S
= +
15V
R
L
= 2KΩ
A
V
= 40dB
= 1kHz
R
S
= 1KΩ
V
10S
= +30V
RIAA COMPENSATION
2
3
4
5
6
7
8
9
10
100
1K
FREQUENCY (Hz)
10K
100K
V
O
OUTPUT VOLTAGE (V
RMS
)
August 31, 1994
69