S E M I C O N D U C T O R
HGTG12N60C3D
24A, 600V, UFS Series N-Channel IGBT
with Anti-Parallel Hyperfast Diode
Package
JEDEC STYLE TO-247
E
C
G
January 1997
Features
•
•
•
•
•
24A, 600V at T
C
= 25
o
C
Typical Fall Time . . . . . . . . . . . . . . 210ns at T
J
= 150
o
C
Short Circuit Rating
Low Conduction Loss
Hyperfast Anti-Parallel Diode
Description
The HGTG12N60C3D is a MOS gated high voltage switching
device combining the best features of MOSFETs and bipolar
transistors. The device has the high input impedance of a MOS-
FET and the low on-state conduction loss of a bipolar transistor.
The much lower on-state voltage drop varies only moderately
between 25
o
C and 150
o
C. The IGBT used is the development
type TA49123. The diode used in antiparallel with the IGBT is
the development type TA49061.
The IGBT is ideal for many high voltage switching applications
operating at moderate frequencies where low conduction losses
are essential.
PACKAGING AVAILABILITY
PART NUMBER
HGTG12N60C3D
PACKAGE
TO-247
BRAND
G12N60C3D
E
G
Terminal Diagram
N-CHANNEL ENHANCEMENT MODE
C
NOTE: When ordering, use the entire part number.
Formerly Developmental Type TA49117.
Absolute Maximum Ratings
T
C
= 25
o
C, Unless Otherwise Specified
HGTG12N60C3D
600
24
12
15
96
±20
±30
24A at 600V
104
0.83
-40 to 150
260
4
13
UNITS
V
A
A
A
A
V
V
W
W/
o
C
o
C
o
C
µs
µs
Collector-Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BV
CES
Collector Current Continuous
At T
C
= 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
C25
At T
C
= 110
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
C110
Average Diode Forward Current at 110
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
(AVG)
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
CM
Gate-Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
GES
Gate-Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
GEM
Switching Safe Operating Area at T
J
= 150
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . .SSOA
Power Dissipation Total at T
C
= 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
D
Power Dissipation Derating T
C
> 25
o
C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . T
J
, T
STG
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
L
Short Circuit Withstand Time (Note 2) at V
GE
= 15V . . . . . . . . . . . . . . . . . . . . . . . . . . t
SC
Short Circuit Withstand Time (Note 2) at V
GE
= 10V . . . . . . . . . . . . . . . . . . . . . . . . . . t
SC
NOTE:
1. Repetitive Rating: Pulse width limited by maximum junction temperature.
2. V
CE(PK)
= 360V, T
J
= 125
o
C, R
GE
= 25Ω.
4,364,073
4,587,713
4,641,162
4,794,432
4,860,080
4,969,027
4,417,385
4,598,461
4,644,637
4,801,986
4,883,767
4,430,792
4,605,948
4,682,195
4,803,533
4,888,627
4,443,931
4,618,872
4,684,413
4,809,045
4,890,143
4,466,176
4,620,211
4,694,313
4,809,047
4,901,127
HARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS:
4,516,143
4,631,564
4,717,679
4,810,665
4,904,609
4,532,534
4,639,754
4,743,952
4,823,176
4,933,740
4,567,641
4,639,762
4,783,690
4,837,606
4,963,951
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures.
Copyright
©
Harris Corporation 1997
File Number
4043.1
3-35
HGTG12N60C3D
Electrical Specifications
T
C
= 25
o
C, Unless Otherwise Specified
LIMITS
PARAMETER
Collector-Emitter Breakdown Voltage
Emitter-Collector Breakdown Voltage
Collector-Emitter Leakage Current
SYMBOL
BV
CES
BV
ECS
I
CES
TEST CONDITIONS
I
C
= 250µA, V
GE
= 0V
I
C
= 10mA, V
GE
= 0V
V
CE
= BV
CES
V
CE
= BV
CES
Collector-Emitter Saturation Voltage
V
CE(SAT)
I
C
= I
C110
,
V
GE
= 15V
T
C
= 25
o
C
T
C
= 150
o
C
T
C
= 25
o
C
T
C
= 150
o
C
T
C
= 25
o
C
T
C
= 150
o
C
T
C
= 25
o
C
MIN
600
15
-
-
-
-
-
-
3.0
TYP
-
25
-
-
1.65
1.85
1.80
2.0
5.0
MAX
-
-
250
2.0
2.0
2.2
2.2
2.4
6.0
UNITS
V
V
µA
mA
V
V
V
V
V
I
C
= 15A,
V
GE
= 15V
Gate-Emitter Threshold Voltage
V
GE(TH)
I
C
= 250µA,
V
CE
= V
GE
V
GE
=
±20V
T
J
= 150
o
C,
V
GE
= 15V,
R
G
= 25Ω,
L = 100µH
Gate-Emitter Leakage Current
Switching SOA
I
GES
SSOA
-
V
CE(PK)
= 480V
V
CE(PK)
= 600V
80
24
-
-
-
±100
-
-
nA
A
A
Gate-Emitter Plateau Voltage
On-State Gate Charge
V
GEP
Q
G(ON)
I
C
= I
C110
, V
CE
= 0.5 BV
CES
I
C
= I
C110
,
V
CE
= 0.5 BV
CES
V
GE
= 15V
V
GE
= 20V
-
-
-
-
-
-
-
-
-
7.6
48
62
14
16
270
210
380
900
1.7
34
30
-
-
-
55
71
-
-
400
275
-
-
2.0
42
37
1.2
1.5
V
nC
nC
ns
ns
ns
ns
µJ
µJ
V
ns
ns
o
C/W
o
Current Turn-On Delay Time
Current Rise Time
Current Turn-Off Delay Time
Current Fall Time
Turn-On Energy
Turn-Off Energy (Note 3)
Diode Forward Voltage
Diode Reverse Recovery Time
t
D(ON)I
t
RI
t
D(OFF)I
t
FI
E
ON
E
OFF
V
EC
t
rr
T
J
= 150
o
C,
I
CE
= I
C110,
V
CE(PK)
= 0.8 BV
CES,
V
GE
= 15V,
R
G
= 25Ω,
L = 100µH
I
EC
= 12A
I
EC
= 12A, dI
EC
/dt = 100A/µs
I
EC
= 1.0A, dI
EC
/dt = 100A/µs
-
-
-
-
-
Thermal Resistance
R
θJC
IGBT
Diode
C/W
NOTE:
3. Turn-Off Energy Loss (E
OFF
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse, and
ending at the point where the collector current equals zero (I
CE
= 0A). The HGTG12N60C3D was tested per JEDEC Standard No. 24-1
Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss. Turn-
On losses include diode losses.
3-36
HGTG12N60C3D
Typical Performance Curves
I
CE
, COLLECTOR-EMITTER CURRENT (A)
I
CE
, COLLECTOR-EMITTER CURRENT (A)
80
70
60
50
40
T
C
= 25
o
C
30
20
10
0
4
6
8
10
12
14
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
T
C
= -40
o
C
T
C
= 150
o
C
DUTY CYCLE <0.5%, V
CE
= 10V
PULSE DURATION = 250µs
PULSE DURATION = 250µs, DUTY CYCLE <0.5%, T
C
= 25
o
C
80
70
60
50
40
30
20
10
0
0
7.0V
2
4
6
8
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
7.5V
10
9.0V
8.5V
8.0V
10.0V
V
GE
= 15.0V
12.0V
FIGURE 1. TRANSFER CHARACTERISTICS
FIGURE 2. SATURATION CHARACTERISTICS
I
CE
, COLLECTOR-EMITTER CURRENT (A)
70
60
50
40
PULSE DURATION = 250µs
DUTY CYCLE <0.5%, V
GE
= 10V
I
CE
, COLLECTOR-EMITTER CURRENT (A)
80
80
70
60
T
C
= 25
o
C
50
40
30
20
10
0
PULSE DURATION = 250µs
DUTY CYCLE <0.5%, V
GE
= 15V
T
C
= -40
o
C
T
C
= -40
o
C
30
20
T
C
= 25
o
C
10
0
0
1
2
3
4
5
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
T
C
= 150
o
C
T
C
= 150
o
C
0
1
2
3
4
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
5
FIGURE 3. COLLECTOR-EMITTER ON-STATE VOLTAGE
FIGURE 4. COLLECTOR-EMITTER ON-STATE VOLTAGE
t
SC
, SHORT CIRCUIT WITHSTAND TIME (µs)
20
120
I
SC
15
100
15
80
10
60
10
5
t
SC
5
10
11
12
13
14
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
40
20
15
0
25
50
75
100
125
T
C
, CASE TEMPERATURE (
o
C)
150
FIGURE 5. MAXIMUM DC COLLECTOR CURRENT AS A
FUNCTION OF CASE TEMPERATURE
FIGURE 6. SHORT CIRCUIT WITHSTAND TIME
3-37
I
SC
, PEAK SHORT CIRCUIT CURRENT(A)
25
I
CE
, DC COLLECTOR CURRENT (A)
V
GE
= 15V
20
V
CE
= 360V, R
GE
= 25Ω, T
J
= 125
o
C
140
HGTG12N60C3D
Typical Performance Curves
100
t
D(ON)I
, TURN-ON DELAY TIME (ns)
(Continued)
400
t
D(OFF)I
, TURN-OFF DELAY TIME (ns)
T
J
= 150
o
C, R
G
= 25Ω, L = 100µH, V
CE(PK)
= 480V
T
J
= 150
o
C, R
G
= 25Ω, L = 100µH, V
CE(PK)
= 480V
300
V
GE
= 15V
50
V
GE
= 10V
200
30
V
GE
= 10V
20
V
GE
= 15V
10
5
10
15
20
25
30
I
CE
, COLLECTOR-EMITTER CURRENT (A)
100
5
10
15
20
25
30
I
CE
, COLLECTOR-EMITTER CURRENT (A)
FIGURE 7. TURN-ON DELAY TIME AS A FUNCTION OF
COLLECTOR-EMITTER CURRENT
200
T
J
=
t
RI
, TURN-ON RISE TIME (ns)
100
150
o
C,
R
G
= 25Ω, L = 100µH, V
CE(PK)
= 480V
V
GE
= 10V
FIGURE 8. TURN-OFF DELAY TIME AS A FUNCTION OF
COLLECTOR-EMITTER CURRENT
300
T
J
= 150
o
C, R
G
= 25Ω, L = 100µH, V
CE(PK)
= 480V
t
FI
, FALL TIME (ns)
200
V
GE
= 10V or 15V
V
GE
= 15V
10
100
90
80
5
10
15
20
25
30
5
10
15
20
25
30
I
CE
, COLLECTOR-EMITTER CURRENT (A)
I
CE
, COLLECTOR-EMITTER CURRENT (A)
5
FIGURE 9. TURN-ON RISE TIME AS A FUNCTION OF
COLLECTOR-EMITTER CURRENT
FIGURE 10. TURN-OFF FALL TIME AS A FUNCTION OF
COLLECTOR-EMITTER CURRENT
2.0
E
ON
, TURN-ON ENERGY LOSS (mJ)
E
OFF
, TURN-OFF ENERGY LOSS (mJ)
T
J
= 150
o
C, R
G
= 25Ω, L = 100µH, V
CE(PK)
= 480V
3.0
2.5
T
J
= 150
o
C, R
G
= 25Ω, L = 100µH, V
CE(PK)
= 480V
1.5
V
GE
= 10V
1.0
V
GE
= 15V
0.5
2.0
1.5
V
GE
= 10V or 15V
1.0
0.5
0
0
5
10
15
20
25
30
I
CE
, COLLECTOR-EMITTER CURRENT (A)
5
10
15
20
25
30
I
CE
, COLLECTOR-EMITTER CURRENT (A)
FIGURE 11. TURN-ON ENERGY LOSS AS A FUNCTION OF
COLLECTOR-EMITTER CURRENT
FIGURE 12. TURN-OFF ENERGY LOSS AS A FUNCTION OF
COLLECTOR-EMITTER CURRENT
3-38
HGTG12N60C3D
Typical Performance Curves
200
f
MAX
, OPERATING FREQUENCY (kHz)
100
V
GE
= 10V
V
GE
= 15V
f
MAX1
= 0.05/(t
D(OFF)I
+ t
D(ON)I
)
f
MAX2
= (P
D
- P
C
)/(E
ON
+ E
OFF
)
P
D
= ALLOWABLE DISSIPATION
P
C
= CONDUCTION DISSIPATION
(DUTY FACTOR = 50%)
R
θ
JC
= 1.2
o
C/W
1
5
10
20
30
I
CE
, COLLECTOR-EMITTER CURRENT (A)
(Continued)
100
I
CE
, COLLECTOR-EMITTER CURRENT (A)
T
J
= 150
o
C, T
C
= 75
o
C
R
G
= 25Ω, L = 100µH
T
J
= 150
o
C, V
GE
= 15V, R
G
= 25Ω, L = 100µH
80
60
LIMITED BY
CIRCUIT
40
10
20
0
0
100
200
300
400
500
600
V
CE(PK)
, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 13. OPERATING FREQUENCY AS A FUNCTION OF
COLLECTOR-EMITTER CURRENT
FIGURE 14. SWITCHING SAFE OPERATING AREA
2500
V
CE
, COLLECTOR - EMITTER VOLTAGE (V)
FREQUENCY = 1MHz
2000
C, CAPACITANCE (pF)
C
IES
600
I
G
REF = 1.276mA, R
L
= 50Ω, T
C
= 25
o
C
15
V
GE
, GATE-EMITTER VOLTAGE (V)
480
V
CE
= 600V
12
1500
360
9
1000
240
V
CE
= 400V
V
CE
= 200V
120
6
500
C
RES
0
0
5
10
15
20
25
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
C
OES
3
0
0
10
20
30
40
Q
G
, GATE CHARGE (nC)
50
60
0
FIGURE 15. CAPACITANCE AS A FUNCTION OF COLLECTOR-
EMITTER VOLTAGE
FIGUE 16. GATE CHARGE WAVEFORMS
Z
θ
JC
, NORMALIZED THERMAL RESPONSE
10
0
0.5
0.2
0.1
10
-1
0.05
0.02
0.01
SINGLE PULSE
10
-2
10
-5
10
-4
10
-3
10
-2
10
-1
t
1
, RECTANGULAR PULSE DURATION (s)
10
0
10
1
DUTY FACTOR, D = t
1
/ t
2
PEAK T
J
= (P
D
X Z
θ
JC
X R
θ
JC
) + T
C
P
D
t
2
t
1
FIGURE 17. IGBT NORMALIZED TRANSIENT THERMAL IMPEDANCE, JUNCTION TO CASE
3-39