Freescale Semiconductor
Technical Data
Document Number: MRF6V2010N
Rev. 5, 4/2010
RF Power Field Effect Transistors
N--Channel Enhancement--Mode Lateral MOSFETs
Designed primarily for CW large--signal output and driver applications with
frequencies up to 450 MHz. Devices are unmatched and are suitable for use in
industrial, medical and scientific applications.
•
Typical CW Performance at 220 MHz: V
DD
= 50 Volts, I
DQ
= 30 mA,
P
out
= 10 Watts
Power Gain — 23.9 dB
Drain Efficiency — 62%
•
Capable of Handling 10:1 VSWR, @ 50 Vdc, 220 MHz, 10 Watts CW
Output Power
Features
•
Characterized with Series Equivalent Large--Signal Impedance Parameters
•
Qualified Up to a Maximum of 50 V
DD
Operation
•
Integrated ESD Protection
•
225°C Capable Plastic Package
•
RoHS Compliant
•
TO--270--2 in Tape and Reel. R1 Suffix = 500 Units per 24 mm,
13 inch Reel.
•
TO--272--2 in Tape and Reel. R1 Suffix = 500 Units per 44 mm,
13 inch Reel.
MRF6V2010NR1
MRF6V2010NBR1
10-
-450 MHz, 10 W, 50 V
LATERAL N-
-CHANNEL
BROADBAND
RF POWER MOSFETs
CASE 1265-
-09, STYLE 1
TO-
-270-
-2
PLASTIC
MRF6V2010NR1
CASE 1337-
-04, STYLE 1
TO-
-272-
-2
PLASTIC
MRF6V2010NBR1
Table 1. Maximum Ratings
Rating
Drain--Source Voltage
Gate--Source Voltage
Storage Temperature Range
Case Operating Temperature
Operating Junction Temperature
(1,2)
Symbol
V
DSS
V
GS
T
stg
T
C
T
J
Value
--0.5, +110
--0.5, +10
-- 65 to +150
150
225
Unit
Vdc
Vdc
°C
°C
°C
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 81°C, 10 W CW
Symbol
R
θJC
Value
(2,3)
3.0
Unit
°C/W
1. Continuous use at maximum temperature will affect MTTF.
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access
MTTF calculators by product.
3. Refer to AN1955,
Thermal Measurement Methodology of RF Power Amplifiers.
Go to http://www.freescale.com/rf.
Select Documentation/Application Notes -- AN1955.
©
Freescale Semiconductor, Inc., 2007--2008, 2010. All rights reserved.
MRF6V2010NR1 MRF6V2010NBR1
1
RF Device Data
Freescale Semiconductor
Table 3. ESD Protection Characteristics
Test Methodology
Human Body Model (per JESD22--A114)
Machine Model (per EIA/JESD22--A115)
Charge Device Model (per JESD22--C101)
Class
2 (Minimum)
A (Minimum)
IV (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD 22--A113, IPC/JEDEC J--STD--020
Rating
3
Package Peak Temperature
260
Unit
°C
Table 5. Electrical Characteristics
(T
A
= 25°C unless otherwise noted)
Characteristic
Off Characteristics
Gate--Source Leakage Current
(V
GS
= 5 Vdc, V
DS
= 0 Vdc)
Drain--Source Breakdown Voltage
(I
D
= 5 mA, V
GS
= 0 Vdc)
Zero Gate Voltage Drain Leakage Current
(V
DS
= 50 Vdc, V
GS
= 0 Vdc)
Zero Gate Voltage Drain Leakage Current
(V
DS
= 100 Vdc, V
GS
= 0 Vdc)
On Characteristics
Gate Threshold Voltage
(V
DS
= 10 Vdc, I
D
= 28
μAdc)
Gate Quiescent Voltage
(V
DD
= 50 Vdc, I
D
= 30 mAdc, Measured in Functional Test)
Drain--Source On--Voltage
(V
GS
= 10 Vdc, I
D
= 70 mAdc)
Dynamic Characteristics
Reverse Transfer Capacitance
(V
DS
= 50 Vdc
±
30 mV(rms)ac @ 1 MHz, V
GS
= 0 Vdc)
Output Capacitance
(V
DS
= 50 Vdc
±
30 mV(rms)ac @ 1 MHz, V
GS
= 0 Vdc)
Input Capacitance
(V
DS
= 50 Vdc, V
GS
= 0 Vdc
±
30 mV(rms)ac @ 1 MHz)
Power Gain
Drain Efficiency
Input Return Loss
C
rss
C
oss
C
iss
—
—
—
0.13
7.3
16.3
—
—
—
pF
pF
pF
V
GS(th)
V
GS(Q)
V
DS(on)
1
1.5
—
1.68
2.68
0.26
3
3.5
—
Vdc
Vdc
Vdc
I
GSS
V
(BR)DSS
I
DSS
I
DSS
—
110
—
—
—
—
—
—
10
—
50
2.5
μAdc
Vdc
μAdc
mA
Symbol
Min
Typ
Max
Unit
Functional Tests
(In Freescale Test Fixture, 50 ohm system) V
DD
= 50 Vdc, I
DQ
= 30 mA, P
out
= 10 W, f = 220 MHz, CW
G
ps
η
D
IRL
22.5
58
—
23.9
62
--14
25.5
—
--9
dB
%
dB
ATTENTION: The MRF6V2010N and MRF6V2010NB are high power devices and special considerations
must be followed in board design and mounting. Incorrect mounting can lead to internal temperatures which
exceed the maximum allowable operating junction temperature. Refer to Freescale Application Note AN3263
(for bolt down mounting) or AN1907 (for solder reflow mounting)
PRIOR TO STARTING SYSTEM DESIGN
to
ensure proper mounting of these devices.
MRF6V2010NR1 MRF6V2010NBR1
2
RF Device Data
Freescale Semiconductor
L2
B1
V
BIAS
+
C2
+
C3
C4
C5
C6
C7
C8
L3
R1
RF
INPUT
Z1
C1
Z2
Z3
L1
Z4
C9
DUT
C10
C17
Z5
Z6
Z7
Z8
Z9
Z10
C18
Z11
RF
OUTPUT
C11
C12
C13 C14
B2
+
C15
C16
V
SUPPLY
Z1
Z2
Z3
Z4
Z5
Z6
0.235″ x 0.082″ Microstrip
1.190″ x 0.082″ Microstrip
0.619″ x 0.082″ Microstrip
0.190″ x 0.270″ Microstrip
0.293″ x 0.270″ Microstrip
0.120″ x 0.270″ Microstrip
Z7
Z8
Z9
Z10
Z11
PCB
0.062″ x 0.270″ Microstrip
0.198″ x 0.082″ Microstrip
5.600″ x 0.082″ Microstrip
0.442″ x 0.082″ Microstrip
0.341″ x 0.082″ Microstrip
Arlon CuClad 250GX--0300--55--22, 0.030″,
ε
r
= 2.55
Figure 1. MRF6V2010NR1(NBR1) Test Circuit Schematic
Table 6. MRF6V2010NR1(NBR1) Test Circuit Component Designations and Values
Part
B1, B2
C1, C8, C11, C18
C2
C3
C4, C13
C5, C14
C6, C15
C7, C12
C9
C10
C16
C17
L1
L2, L3
R1
Description
95
Ω,
100 MHz Long Ferrite Beads
1000 pF Chip Capacitors
10
μF,
35 V Tantalum Capacitor
22
μF,
35 V Tantalum Capacitor
39 K pF Chip Capacitors
22 K pF Chip Capacitors
0.1
μF
Chip Capacitors
2.2
μF,
50 V Chip Capacitors
0.6--4.5 pF Variable Capacitor, Gigatrim
12 pF Chip Capacitor
470
μF,
63 V Electrolytic Capacitor
27 pF Chip Capacitor
17.5 nH Inductor
82 nH Inductors
120
Ω,
1/4 W Chip Resistor
Part Number
2743021447
ATC100B102JT50XT
T491D106K035AT
T491X226K035AT
ATC200B393KT50XT
ATC200B223KT50XT
CDR33BX104AKYS
C1825C225J5RAC
27271SL
ATC100B120JT500XT
ESMG630ELL471MK205
ATC100B270JT500XT
B06T
1812SMS--82NJ
CRCW1206120RFKEA
Manufacturer
Fair--Rite
ATC
Kemet
Kemet
ATC
ATC
Kemet
Kemet
Johanson
ATC
United Chemi--Con
ATC
CoilCraft
CoilCraft
Vishay
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
3
C5
C4
B1
C7
C2
C3
R1
L1
C8
CUT OUT AREA
C12
C11
C6
C14
C13
L2
C15
B2
C16
L3
C10
C17
C18
C1
C9
MRF6V2010N/NB
Rev. 3
Figure 2. MRF6V2010NR1(NBR1) Test Circuit Component Layout
MRF6V2010NR1 MRF6V2010NBR1
4
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
100
100
10
C
oss
Measured with
±30
mV(rms)ac @ 1 MHz
V
GS
= 0 Vdc
C
rss
0.1
0
10
20
30
40
50
V
DS
, DRAIN--SOURCE VOLTAGE (VOLTS)
I
D
, DRAIN CURRENT (AMPS)
C
iss
C, CAPACITANCE (pF)
10
1
1
0.1
1
T
C
= 25°C
10
V
DS
, DRAIN--SOURCE VOLTAGE (VOLTS)
100
200
Figure 3. Capacitance versus Drain-
-Source Voltage
0.35
0.3
I
D
, DRAIN CURRENT (AMPS)
G
ps
, POWER GAIN (dB)
0.25
0.2
0.15
0.1
0.05
0
0
20
40
60
80
100
2.5 V
2.25 V
120
2.63 V
V
GS
= 3 V
25
24
23
22
21
23 mA
Figure 4. DC Safe Operating Area
I
DQ
= 45 mA
38 mA
30 mA
2.75 V
20 15 mA
19
18
0.1
1
P
out
, OUTPUT POWER (WATTS) CW
10
20
V
DD
= 50 Vdc
f1 = 220 MHz
DRAIN VOLTAGE (VOLTS)
Figure 5. DC Drain Current versus Drain Voltage
--20
IMD, THIRD ORDER INTERMODULATION
DISTORTION (dBc)
--25
--30
--35
--40
--45
--50
--55
1
I
DQ
= 60 mA
15 mA
23 mA
P
out
, OUTPUT POWER (dBm)
30 mA
38 mA
45 mA
47
45
43
41
39
37
13
Figure 6. CW Power Gain versus Output Power
Ideal
P3dB = 40.87 dBm (12.2 W)
P1dB = 40.43 dBm (11.04 W)
Actual
V
DD
= 50 Vdc
f1 = 220 MHz, f2 = 220.1 MHz
Two--Tone Measurements
100 kHz Tone Spacing
10
20
V
DD
= 50 Vdc, I
DQ
= 30 mA
f = 220 MHz
15
17
19
21
23
P
out
, OUTPUT POWER (WATTS) PEP
P
in
, INPUT POWER (dBm)
Figure 7. Third Order Intermodulation Distortion
versus Output Power
Figure 8. CW Output Power versus Input Power
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
5