Further extensions of the CWR15 product are planned for later in 2009. A new case size will be added, and the voltage range will be
extended to 20 volts. Ratings of 100 µF at 4 volts to 10 µF at 20 volts will be included in this extension of the product line.
SEPTEMBER 2013
n
53
TBC Series
CWR15 MIL-PRF-55365/12
HOW TO ORDER
COTS-PLUS & MIL QPL (CWR15):
TBC L
Type
Case
Size
Established Reliability, COTS-Plus & Space Level
685
*
004
C
#
Packaging Inspection Level
S = Std.
B = Bulk
Conformance
R = 7" T&R
L = Group A
S = 13" T&R
W = Waffle
M = MIL (JAN)
CWR15
See page 6
for additional
packaging
options.
@
0
^
++
Surge Test
Option
00 = None
23 = 10 Cycles, +25ºC
24 = 10 Cycles,
-55ºC & +85ºC
45 = 10 cycles,
-55ºC & +85ºC
before Weibull
Capacitance Capacitance
Voltage
Standard or
Code
Tolerance
Code
Low ESR
pF code:
M = ±20% 004 = 4Vdc
Range
1st two digits
K = ±10% 006 = 6Vdc C = Std ESR
represent
J = ±5%
010 = 10Vdc
significant
020 = 20Vdc
figures 3rd
digit represents
multiplier
(number of
zeros to follow)
Reliability Grade
Qualification Termination Finish
Level
Weibull:
0 = Fused Solder
0 = N/A
B = 0.1%/1000 hrs.
Plated
90% conf.
9 = SRC9000 9 = Gold Plated
C = 0.01%/1000 hrs.
7 = Matte Sn
90% conf.
(COTS-Plus only)
D = 0.001%/1000 hrs.
90% conf.
Z = Non-ER
Not RoHS Compliant
LEAD-FREE COMPATI-
BLE
COMPONENT
For RoHS compliant products,
please select correct termination style.
CWR15 P/N CROSS REFERENCE:
CWR15
Style
F
Voltage
Code
C = 4Vdc
D = 6Vdc
F = 10Vdc
J = 20Vdc
C
Termination
Finish
B = Gold Plated
K = Solder Fused
685
Capacitance
Code
pF code:
1st two digits
represent
significant
figures 3rd digit
represents
number of zeros
to follow
*
Capacitance
Tolerance
J = ±5%
K = ±10%
M = ±20%
See page 6 for
additional
packaging
options.
–
Product Level
Designator
Weibull
B = 0.1
C = 0.01
D = 0.001
L
Case Size
+
Surge Test
Option
A = +25°C after Weibull
B = -55°C & +85°C
after Weibull
C = -55°C & +85°C
before Weibull
Not RoHS Compliant
SPACE LEVEL OPTIONS TO SRC9000*:
TBC L
Type
Case
Size
685
*
004
C
L
@
9
^
++
Surge Test
Option
45 = 10 cycles,
-55ºC & +85ºC
before Weibull
Not RoHS Compliant
Capacitance Capacitance
Voltage
Standard or Packaging Inspection Level
Code
Tolerance
Code
Low ESR
L = Group A
B = Bulk
pF code:
M = ±20% 004 = 4Vdc
Range
R = 7" T&R
1st two digits
K = ±10% 006 = 6Vdc C = Std ESR S = 13" T&R
represent
J = ±5%
010 = 10Vdc L = Low ESR W = Waffle
significant
020 = 20Vdc
figures 3rd
See page 6
digit represents
for additional
multiplier
(number of
packaging
zeros to follow)
options.
Reliability Grade
Qualification Termination Finish
Level
Weibull:
0 = Fused Solder
9 = SRC9000
B = 0.1%/1000 hrs.
Plated
90% conf.
9 = Gold Plated
C = 0.01%/1000 hrs.
90% conf.
D = 0.001%/1000 hrs.
90% conf.
*Contact factory for AVX SRC9000 Space Level SCD details.
TECHNICAL SPECIFICATIONS
Technical Data:
Capacitance Range:
Capacitance Tolerance:
Rated Voltage: (V
R
)
Category Voltage: (V
C
)
Surge Voltage: (V
s
)
Temperature Range:
Unless otherwise specified, all technical data relate to an ambient temperature of 25°C
0.47 μF to 68 μF
±5%; ±10%; ±20%
4
6
10
20
2.7
4
6.7
13.3
5.3
8
13.3
26.7
3.5
5.3
8.7
17.8
-55°C to +125°C
85°C:
125°C:
85°C:
125°C:
54
n
SEPTEMBER 2013
TBC Series
CWR15 MIL-PRF-55365/12
Established Reliability, COTS-Plus & Space Level
RATING & PART NUMBER REFERENCE
CWR15 P/N
CWR15CK685*^L+
CWR15CK106*^R+
CWR15CK156*^R+
CWR15CK226*^R+
CWR15CK336*^R+
CWR15CK686*^A+
CWR15DK335*^L+
CWR15DK475*^L+
CWR15DK685*^R+
CWR15DK106*^R+
CWR15DK156*^R+
CWR15DK226*^A+
CWR15DK336*^A+
CWR15DK476*^A+
CWR15FK474*^L+
CWR15FK684*^L+
CWR15FK105*^L+
CWR15FK155*^L+
CWR15FK225*^L+
CWR15FK335*^R+
CWR15FK475*^R+
CWR15FK685*^R+
CWR15FK106*^R+
CWR15FK156*^R+
CWR15JK474*^R+
AVX MIL & COTS-Plus P/N
TBC L 685 * 004 C
TBC R 106 * 004 C
TBC R 156 * 004 C
TBC R 226 * 004 C
TBC R 336 * 004 C
TBC A 686 * 004 C
TBC L 335 * 006 C
TBC L 475 * 006 C
TBC R 685 * 006 C
TBC R 106 * 006 C
TBC R 156 * 006 C
TBC A 226 * 006 C
TBC A 336 * 006 C
TBC A 476 * 006 C
TBC L 474 * 010 C
TBC L 684 * 010 C
TBC L 105 * 010 C
TBC L 155 * 010 C
TBC L 225 * 010 C
TBC R 335 * 010 C
TBC R 475 * 010 C
TBC R 685 * 010 C
TBC R 106 * 010 C
TBC A 156 * 010 C
TBC L 474 * 020 C
#@0^+
# @ 0 ^ ++
# @ 0 ^ ++
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
# @ 0 ^ ++
# @ 0 ^ ++
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
Parametric Specifications by Rating per MIL-PRF-55365/12
Cap
DC Rated
ESR
DCL max
DF Max
@ 120Hz Voltage @ 100kHz
+25ºC
+85ºC
+125ºC
+25ºC
+(85/125)ºC
μF
V
Ohms
AVX SRC9000 P/N
Case
(μA)
(μA)
(μA)
(%)
(%)
@ 25ºC
@ +85ºC @ +25ºC
TBC L 685 * 004 C L @ 9 ^ +
L
6.8
4
10
0.5
5
6
8
16
TBC R 106 * 004 C L @ 9 ^ ++ R
10
4
6
0.5
5
6
8
16
TBC R 156 * 004 C L @ 9 ^ ++ R
15
4
6
0.6
6
7
8
16
TBC R 226 * 004 C L @ 9 ^ +
R
22
4
6
0.9
9
11
8
16
TBC R 336 * 004 C L @ 9 ^ +
R
33
4
6
1.3
13
16
10
20
TBC A 686 * 004 C L @ 9 ^ +
A
68
4
1
2.7
27
33
15
30
TBC L 335 * 006 C L @ 9 ^ +
L
3.3
6
10
0.5
5
6
6
12
TBC L 475 * 006 C L @ 9 ^ +
L
4.7
6
10
0.5
5
6
8
16
TBC R 477 * 685 C L @ 9 ^ ++ R
6.8
6
6
0.5
5
6
8
16
TBC R 478 * 106 C L @ 9 ^ ++ R
10
6
6
0.6
6
7
8
16
TBC R 156 * 006 C L @ 9 ^ +
R
15
6
6
0.9
9
11
8
16
TBC A 226 * 006 C L @ 9 ^ +
A
22
6
6
1.4
14
17
10
20
TBC A 336 * 006 C L @ 9 ^ +
A
33
6
6
2
20
24
10
20
TBC A 476 * 006 C L @ 9 ^ +
A
47
6
4
2.8
28
34
15
30
TBC L 474 * 010 C L @ 9 ^ +
L
0.47
10
12
0.5
5
6
6
12
TBC L 684 * 010 C L @ 9 ^ +
L
0.68
10
10
0.5
5
6
6
12
TBC L 105 * 010 C L @ 9 ^ +
L
1
10
10
0.5
5
6
6
12
TBC L 155 * 010 C L @ 9 ^ +
L
1.5
10
10
0.5
5
6
6
12
TBC L 225 * 010 C L @ 9 ^ +
L
2.2
10
10
0.5
5
6
6
12
TBC R 335 * 010 C L @ 9 ^ +
R
3.3
10
6
0.5
5
6
8
16
TBC R 475 * 010 C L @ 9 ^ +
R
4.7
10
6
0.5
5
6
8
16
TBC R 685 * 010 C L @ 9 ^ +
R
6.8
10
6
0.7
7
8.5
8
16
TBC R 106 * 010 C L @ 9 ^ +
R
10
10
6
1
10
12
8
16
TBC A 156 * 010 C L @ 9 ^ +
A
15
10
6
1.5
15
18
10
20
TBC L 474 * 020 C L @ 9 ^ +
L
0.47
20
24
0.5
5
6
6
12
-55ºC
(%)
12
12
12
12
15
23
9
12
12
12
12
15
15
23
9
9
9
9
9
12
12
12
12
15
9
25ºC
Dissipation
Ripple
A
W
(100kHz)
0.025
0.05
0.045
0.09
0.045
0.09
0.045
0.09
0.045
0.09
0.040
0.20
0.025
0.05
0.025
0.05
0.045
0.09
0.045
0.09
0.045
0.09
0.040
0.08
0.040
0.08
0.040
0.10
0.025
0.05
0.025
0.05
0.025
0.05
0.025
0.05
0.025
0.05
0.045
0.09
0.045
0.09
0.045
0.09
0.045
0.09
0.040
0.08
0.025
0.03
Power
Typical Ripple Data by Rating
85ºC
125ºC
25ºC
Ripple
Ripple
Ripple
A
A
V
(100kHz) (100kHz) (100kHz)
0.05
0.02
0.50
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.18
0.08
0.20
0.05
0.02
0.50
0.05
0.02
0.50
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.07
0.03
0.49
0.07
0.03
0.49
0.09
0.04
0.40
0.04
0.02
0.55
0.05
0.02
0.50
0.05
0.02
0.50
0.05
0.02
0.50
0.05
0.02
0.50
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.07
0.03
0.49
0.03
0.01
0.77
85ºC
Ripple
V
(100kHz)
0.45
0.47
0.47
0.47
0.47
0.18
0.45
0.45
0.47
0.47
0.47
0.44
0.44
0.36
0.49
0.45
0.45
0.45
0.45
0.47
0.47
0.47
0.47
0.44
0.70
125ºC
Ripple
V
(100kHz)
0.20
0.21
0.21
0.21
0.21
0.08
0.20
0.20
0.21
0.21
0.21
0.20
0.20
0.16
0.22
0.20
0.20
0.20
0.20
0.21
0.21
0.21
0.21
0.20
0.31
All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.
NOTE: AVX reserves the right to supply a higher voltage rating or tighter tolerance part in the same case size, to the same reliability standards.
https://training.eeworld.com.cn/TI/video/12740, today I watched the series of sessions of analog and digital electronics elective course, AC and DC competition numbers, and understood many things that...
[i=s]This post was last edited by amarelo on 2022-4-22 00:01[/i]Hello everyone, I would like to ask a question. When I was programming, I wanted to add the ADC example of the underlying driver code of...
[i=s] This post was last edited by Lazy Cat Love Flying on 2021-8-2 15:24[/i]First meetingSince I got an e-book reader, I haven't bought a paper book for more than half a year. I took advantage of thi...
As the title, specific model: R5F10DLEJFBThe code and simulation data are shown in the figure, including the following assembly instructions:
Idiag = adValue;
I was really surprised that such a simple...
equipment:
RSL10-SENSE-GEVK: RSL10 Sensor Development KitFrom the schematic diagram, the geomagnetic sensor and BHI160 are together. There is no official routine code. I will share it here. Let's go d...
Justice_Gaoonsemi and Avnet IoT Innovation Design Competition
Evaluation kit features Qorvo's high-performance BLDC/PMSM controller/driver and CGD's easy-to-use ICeGaN GaN power IC performance
2024年11月12日 英国剑桥-
无晶圆厂环保科技半导体公司 Camb...[Details]
Install the CDT C/C++ Development Toolkit so that eclipse can develop C/C++ projects. Enter in Help– Install New Software: http://download.eclipse.org/tools/cdt/releases/galileo. If the installatio...[Details]
Op amps are often terminated in series to match the impedance of the load. However, this practical approach results in a 3dB output power loss in the termination resistor (Figure 1). Newer op amps op...[Details]
Introduction Considering the impending global energy crisis and people's growing expectations for environmental protection, energy conservation is essential for the operation of efficient wireless ...[Details]
1. Basic Information of the Company
1. Company Address: Industrial Park, Youfu Town, Lanxi City, Zhejiang Province
2. Creation time: December 2009
(III) Industry: Lead-acid battery m...[Details]
Recently, the office park operation and management platform built by BOE for the "ICC" office building in UBP Hengtong International Business Park in Beijing was successfully launched online. As the ...[Details]
China, June 10, 2021 – STMicroelectronics (ST), a global semiconductor leader serving multiple electronic applications, announced that Benedetto Vigna, President of the Analog, MEMS and Sensors (AMS)...[Details]
It is reported that the US telecommunications industry is promoting the construction of 5G communication networks, and radio frequencies have become a focus resource for manufacturers to compete for....[Details]
Promoting the use of electric vehicles can reduce carbon emissions and dependence on fossil fuels. However, the limited range and high cost of electric vehicles have deterred many potential buyers. "...[Details]
Nidec Intelligent Motion Co., Ltd. and the University of Waterloo in Canada have started research and development work to further improve the performance of automotive biometric radio wave sensors (...[Details]
There are many types of instruments and meters, and they play a vital role in various industries. Have you ever known what an optical time domain reflectometer is? In fact, it is also an optical instr...[Details]
In recent years, frequency modulation technology, which originated from communication engineering, has been considered an effective method to reduce electromagnetic interference of switching converter...[Details]
The STC12C5A60S2/AD/PWM series of microcontrollers is a single clock/machine cycle (1T) microcontroller produced by Hongjing Technology. It is a new generation of 8051 microcontroller with high spe...[Details]
Servo systems are an indispensable part of modern industrial automation and precision control. According to different control methods, servo systems can be divided into open-loop servo systems, clo...[Details]