Ordering Information .................................................................................................................................................................... 2
User Programming Interface ..................................................................................................................................... 18
Start-up output frequency and signaling types ........................................................................................................... 18
Any-frequency function ............................................................................................................................................. 19
C/SPI Control Registers...................................................................................................................................................... 28
9 I
Register Address: 0x00. DCO Frequency Control Least Significant Word (LSW) .................................................... 28
Register Address: 0x01. OE Control, DCO Frequency Control Most Significant Word (MSW) ................................. 29
Register Address: 0x02. DCO PULL RANGE CONTROL ........................................................................................ 29
Register Address: 0x03. Frac-N PLL Feedback Divider Integer Value and Frac-N PLL Feedback Divider Fraction
Value MSW ............................................................................................................................................................... 30
Register Address: 0x05. Forward Divider, Driver Control ......................................................................................... 30
Register Address: 0x06. Driver Divider, Driver Control ............................................................................................. 31
2
C Operation ........................................................................................................................................................................ 32
10 I
I
2
C protocol ............................................................................................................................................................... 32
I
2
C Timing Specification ............................................................................................................................................ 35
I
2
C Device Address Modes ....................................................................................................................................... 36
Dimensions and Patterns ........................................................................................................................................................... 43
Additional Information ................................................................................................................................................................ 44
Revision History ......................................................................................................................................................................... 45
Rev 1.01
Page 3 of 45
www.sitime.com
SiT3521
1 to 340 MHz Elite Platform I2C/SPI Programmable Oscillator
1 Electrical Characteristics
All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with
standard output terminations shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics – Common to LVPECL, LVDS and HCSL
Parameter
Output Frequency Range
Symbol
f
Min.
1
Typ.
–
–
–
–
–
±1
–
–
–
Max.
340
Unit
MHz
Condition
Factory or user programmable, accurate to 6 decimal places
Frequency Range
Frequency Stability
Frequency Stability
F_stab
-10
-20
-25
-50
First Year Aging
F_1y
–
+10
+20
+25
+50
–
ppm
ppm
ppm
ppm
ppm
°C
°C
°C
1
st
-year aging at 25°C
Inclusive of initial tolerance, operating temperature, rated
power supply voltage and load variations.
Temperature Range
Operating Temperature Range
T_use
-20
-40
-40
+70
+85
+105
Supply Voltage
Supply Voltage
Vdd
2.97
2.7
2.52
2.25
3.3
3.0
2.8
2.5
–
–
100
–
–
–
3.63
3.3
3.08
2.75
–
30%
–
V
V
V
V
Extended Commercial
Industrial
Extended Industrial. Available only for I
2
C operation, not SPI.
Input Characteristics – OE Pin
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
VIH
VIL
Z_in
70%
–
–
Vdd
Vdd
kΩ
OE pin
OE pin
OE pin, logic high or logic low
Output Characteristics
Duty Cycle
DC
45
–
–
55
%
Startup and Output Enable/Disable Timing
Start-up Time
Output Enable/Disable Time –
Hardware control via OE pin
Output Enable/Disable Time –
Software control via I
2
C/SPI
T_start
T_oe_hw
3.0
3.8
ms
µs
Measured from the time Vdd reaches its rated minimum value
Measured from the time OE pin reaches rated VIH and VIL to
the time clock pins reach 90% of swing and high-Z.
See
Figure 9
and
Figure 10
Measured from the time the last byte of command is
transmitted via I
2
C/SPI (reg1) to the time clock pins reach 90%
of swing and high-Z. See
Figure 30
and
Figure 31
T_oe_sw
–
–
6.5
µs
Rev 1.01
Page 4 of 45
www.sitime.com
SiT3521
1 to 340 MHz Elite Platform I2C/SPI Programmable Oscillator
Table 2. Electrical Characteristics – LVPECL Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Maximum Output Current
Idd
I_OE
I_leak
I_driver
–
–
–
–
–
–
0.15
–
89
58
–
32
mA
mA
A
mA
Excluding Load Termination Current, Vdd = 3.3 V or 2.5 V
OE = Low
OE = Low
Maximum average current drawn from OUT+ or OUT-
Output Characteristics
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
VOH
VOL
V_Swing
Tr, Tf
Vdd - 1.1V
Vdd - 1.9V
1.2
–
–
–
1.6
225
Vdd - 0.7V
Vdd - 1.5V
2.0
290
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[3]
Note:
3. Measured according to JESD65B.
T_jitt
–
0.225
0.1
0.225
0.11
1
0.340
0.14
0.340
0.15
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3 V or 2.5 V
V
V
V
ps
See
Figure 5
See
Figure 5
See
Figure 6
20% to 80%, see
Figure 6
Table 3. Electrical Characteristics – LVDS Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Idd
I_OE
I_leak
–
–
–
–
–
0.15
80
61
–
mA
mA
A
Excluding Load Termination Current, Vdd = 3.3 V or 2.5 V
OE = Low
OE = Low
Output Characteristics
Differential Output Voltage
Delta VOD
Offset Voltage
Delta VOS
Rise/Fall Time
VOD
ΔVOD
VOS
ΔVOS
Tr, Tf
250
–
1.125
–
–
–
–
–
–
400
455
50
1.375
50
470
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[4]
Note:
4. Measured according to JESD65B.
T_jitt
–
0.21
0.1
0.21
0.1
1
0.275
0.12
0.367
0.12
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3 V or 2.5 V
mV
mV
V
mV
ps
f = 156.25MHz See
Figure 7
See
Figure 7
See
Figure 7
See
Figure 7
Measured with 2 pF capacitive loading to GND, 20% to 80%,
Shenzhen Hangshun Chip Technology Research Co., Ltd. has developed and designedthree series of chips, HK32F030, HK32F031, and HK32F03X, based on ARM Cortex-M0, collectively referred to as the HK32F03x...
The prosperity of China's automobile market has not been greatly affected by the rise in oil prices. According to media reports, there are currently 8,000 new cars added each month in Beijing alone, m...
I plan to use AT89C51 microcontroller to do a graduation project on passive pedestrian protection. Does anyone have a good design plan?Software design, hardware design.My email: 1589656053@qq.com...
[i=s]This post was last edited by jszszzy on 2022-5-3 17:23[/i][Sipeed LicheeRV 86 Panel Review]——Review SummaryPrevious links:
Lichee RV 86 PANEL Review (7) - Deploy a personal blog on Lichee
Lichee ...
Just like the 10086 system! How does it detect the key you press? How does it receive your command? [b][size=13px][color=#000000]Can Android phones achieve such a function? Can external hardware devic...
[i=s]This post was last edited by music_586 on 2019-4-4 19:06[/i] [align=center] [b][color=#5E7384]This content was originally created by EEWORLD forum user [size=3]music_586[/size]. If you need to re...
The definition of a plug-in hybrid electric vehicle is a hybrid electric vehicle that can use an external power source to charge the vehicle's power battery. A plug-in hybrid electric vehicle has two...[Details]
According to foreign media reports, after Microsoft began accepting pre-orders for the Surface Duo, which will be shipped on September 10, the device has officially become a reality. The Surfac...[Details]
Specific function implementation: When the switch is pressed, the buzzer alarms and the LED rotates and lights up. Devices used: AT89C51, button, resistor, buzzer (SOUNDER), 8 LED lights Proteus si...[Details]
Capacitive/digital converters allow the use of the advantages of capacitive sensors, including: simple shape adaptation, low power consumption and favorable manufacturing costs, as well as the adva...[Details]
Chipmakers that supply Apple should have learned by now that they should never treat this business as a permanent one. Intel is the latest example, as Apple eventually replaced Intel processors with ...[Details]
Central topics:
Discussion on Switching Power Supply Test Scheme
Solution:
Testing with a digital multimeter
Use high-precision and high-resolution ...[Details]
Recently, the three mandatory national standards GB 18384-2020 "Safety Requirements for Power Batteries for Electric Vehicles", GB 30381-2020 "Safety Requirements for Electric Vehicles" and GB 38032-...[Details]
(I) First, set the multimeter to the resistance range
(ii) Use the two probes of the multimeter to touch the two ends of the electrolytic capacitor.
At this time, the pointer of the multi...[Details]
Investment bank Wedbush predicts that the iPhone 12 will be launched around the same time as the iPhone X, and despite the challenges of the coronavirus, 5G will bring a super cycle for Apple in 2020...[Details]
April 26th is World Intellectual Property Day. As the world's new energy industry is booming and Chinese power battery companies are moving towards internationalization, whoever controls the co...[Details]
Recently, HTC launched a new phone called HTC Wildfire E2 Plus, which will be sold in the Russian market with a price tag of 12,990 rubles (about 1,125 yuan). Its screen is a 6.82-inch IPS LCD with...[Details]
environment Python:2.7.13 Development board: TQ2440 Toolchain: arm-none-linux-gnueabi-gcc 4.8.3 Overview Python3 has been ported to TQ2440 before. Now we will port Python2, which is basical...[Details]
Most engineering labs have digital oscilloscopes, but many engineers don’t fully explore their capabilities. One of the more interesting features of a digital oscilloscope is its math channel, which ...[Details]
"Tech Unheard" is a technology interview podcast hosted by Arm CEO Rene Haas, focusing on the forces of change in the industry and exploring cutting-edge technologies and the stories behind them. T...[Details]