PD - 94575A
INSULATED GATE BIPOLAR TRANSISTOR
Features
• Low VCE (on) Non Punch Through IGBT Technology.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Positive VCE (on) Temperature Coefficient.
C
IRGB6B60K
IRGS6B60K
IRGSL6B60K
V
CES
= 600V
I
C
= 7.0A, T
C
=100°C
G
E
t
sc
> 10µs, T
J
=150°C
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
n-channel
V
CE(on)
typ. = 1.8V
TO-220AB
IRGB6B60K
D
2
Pak
IRGS6B60K
TO-262
IRGSL6B60K
Absolute Maximum Ratings
Parameter
V
CES
I
C
@ T
C
= 25°C
I
C
@ T
C
= 100°C
I
CM
I
LM
V
GE
P
D
@ T
C
= 25°C
P
D
@ T
C
= 100°C
T
J
T
STG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Max.
600
13
7.0
26
26
± 20
90
36
-55 to +150
300 (0.063 in. (1.6mm) from case)
Units
V
A
V
W
°C
Thermal Resistance
Parameter
R
θJC
R
θCS
R
θJA
R
θJA
Wt
Junction-to-Case - IGBT
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Junction-to-Ambient (PCB Mount, steady state)
Weight
Min.
–––
–––
–––
–––
–––
Typ.
–––
0.50
–––
–––
1.44
Max.
1.4
–––
62
40
–––
Units
°C/W
g
www.irf.com
1
8/18/04
IRG/B/S/SL6B60K
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
V
(BR)CES
∆V
(BR)CES
/∆T
J
V
CE(on)
V
GE(th)
∆
V
GE(th)
/
∆
T
J
g
fe
I
CES
I
GES
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage 600 –––
Temperature Coeff. of Breakdown Voltage ––– 0.3
Collector-to-Emitter Saturation Voltage
1.5 1.80
––– 2.20
Gate Threshold Voltage
3.5 4.5
Temperature Coeff. of Threshold Voltage ––– -10
Forward Transconductance
––– 3.0
Zero Gate Voltage Collector Current
––– 1.0
––– 200
Gate-to-Emitter Leakage Current
––– –––
Max. Units
Conditions
–––
V
V
GE
= 0V, I
C
= 500µA
––– V/°C V
GE
= 0V, I
C
= 1.0mA, (25°C-150°C)
2.20
V
I
C
= 5.0A, V
GE
= 15V
2.50
I
C
= 5.0A,V
GE
= 15V,
T
J
= 150°C
5.5
V
V
CE
= V
GE
, I
C
= 250µA
––– mV/°C V
CE
= V
GE
, I
C
= 1.0mA, (25°C-150°C)
–––
S
V
CE
= 50V, I
C
= 5.0A, PW=80µs
150
µA
V
GE
= 0V, V
CE
= 600V
500
V
GE
= 0V, V
CE
= 600V, T
J
= 150°C
±100 nA
V
GE
= ±20V
Ref.Fig.
5, 6,7
8,9,10
8,9,10
11
Switching Characteristics @ T
J
= 25°C (unless otherwise specified)
Qg
Qge
Qgc
E
on
E
off
E
tot
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
tot
t
d(on)
t
r
t
d(off)
t
f
C
ies
C
oes
C
res
RBSOA
SCSOA
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Reverse Bias Safe Operting Area
Short Circuit Safe Operting Area
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
I
C
= 5.0A
–––
nC
V
CC
= 400V
–––
V
GE
= 15V
210
µJ
I
C
= 5.0A, V
CC
= 400V
245
V
GE
= 15V,R
G
= 100Ω, L =1.4mH
455
Ls = 150nH
T
J
= 25°C
34
I
C
= 5.0A, V
CC
= 400V
26
V
GE
= 15V, R
G
= 100Ω L =1.4mH
230
ns
Ls = 150nH, T
J
= 25°C
22
260
I
C
= 5.0A, V
CC
= 400V
300
µJ
V
GE
= 15V,R
G
= 100Ω, L =1.4mH
560
Ls = 150nH
T
J
= 150°C
37
I
C
= 5.0A, V
CC
= 400V
26
V
GE
= 15V, R
G
= 100Ω L =1.4mH
255
ns
Ls = 150nH, T
J
= 150°C
27
–––
V
GE
= 0V
–––
pF
V
CC
= 30V
–––
f = 1.0MHz
T
J
= 150°C, I
C
= 26A, Vp =600V
FULL SQUARE
V
CC
= 500V, V
GE
=+15V to 0V,
R
G
= 100Ω
µs
T
J
= 150°C, Vp =600V, R
G
= 100Ω
10 ––– –––
V
CC
= 360V, V
GE
= +15V to 0V
Typ.
18.2
1.9
9.2
110
135
245
25
17
215
13.2
150
190
340
28
17
240
18
290
34
10
Ref.Fig.
17
CT1
CT4
CT4
CT4
12,14
WF1WF2
13, 15
CT4
WF1
WF2
16
4
CT2
CT3
WF3
Note
to
are on page 13
2
www.irf.com
IRG/B/S/SL6B60K
15
100
90
80
10
Ptot (W)
IC (A)
70
60
50
40
30
20
10
5
0
0
20
40
60
80
100 120 140 160
T C (°C)
0
0
20
40
60
80
100 120 140 160
T C (°C)
Fig. 1
- Maximum DC Collector Current vs.
Case Temperature
Fig. 2
- Power Dissipation vs. Case
Temperature
100
100
10
10 µs
IC (A)
IC A)
10
1
100 µs
DC
1ms
0.1
1
10
100
VCE (V)
1000
10000
1
0
10
100
1000
VCE (V)
Fig. 3
- Forward SOA
T
C
= 25°C; T
J
≤
150°C
Fig. 4
- Reverse Bias SOA
T
J
= 150°C; V
GE
=15V
www.irf.com
3
IRG/B/S/SL6B60K
20
18
16
14
ICE (A)
20
VGE
VGE
VGE
VGE
VGE
= 18V
= 15V
= 12V
= 10V
= 8.0V
ICE (A)
18
16
14
12
10
8
6
4
2
0
12
10
8
6
4
2
0
0
VGE
VGE
VGE
VGE
VGE
= 18V
= 15V
= 12V
= 10V
= 8.0V
1
2
3
VCE (V)
4
5
6
0
1
2
3
VCE (V)
4
5
6
Fig. 5
- Typ. IGBT Output Characteristics
T
J
= -40°C; tp = 80µs
Fig. 6
- Typ. IGBT Output Characteristics
T
J
= 25°C; tp = 80µs
20
18
16
14
ICE (A)
12
10
8
6
4
2
0
0
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
1
2
3
VCE (V)
4
5
6
Fig. 7
- Typ. IGBT Output Characteristics
T
J
= 150°C; tp = 80µs
4
www.irf.com
IRG/B/S/SL6B60K
20
18
16
14
VCE (V)
VCE (V)
20
18
16
14
ICE = 3.0A
ICE = 5.0A
ICE = 10A
12
10
8
6
4
2
0
5
10
VGE (V)
15
20
5
10
VGE (V)
15
20
ICE = 3.0A
ICE = 5.0A
ICE = 10A
12
10
8
6
4
2
0
Fig. 8
- Typical V
CE
vs. V
GE
T
J
= -40°C
Fig. 9
- Typical V
CE
vs. V
GE
T
J
= 25°C
20
18
16
14
VCE (V)
40
35
30
ICE = 3.0A
ICE = 5.0A
ICE = 10A
T J = 25°C
T J = 150°C
10
8
6
4
2
0
5
10
VGE (V)
ICE (A)
12
25
20
15
10
5
T J = 150°C
T J = 25°C
0
5
10
VGE (V)
15
20
15
20
0
Fig. 10
- Typical V
CE
vs. V
GE
T
J
= 150°C
Fig. 11
- Typ. Transfer Characteristics
V
CE
= 50V; tp = 10µs
www.irf.com
5