CY7C1511AV18, CY7C1526AV18
CY7C1513AV18, CY7C1515AV18
72-Mbit QDR™-II SRAM 4-Word
Burst Architecture
Features
■
Configurations
CY7C1511AV18 – 8M x 8
CY7C1526AV18 – 8M x 9
CY7C1513AV18 – 4M x 18
CY7C1515AV18 – 2M x 36
Separate independent read and write data ports
❐
Supports concurrent transactions
300 MHz clock for high bandwidth
4-word burst for reducing address bus frequency
Double Data Rate (DDR) interfaces on both read and write ports
(data transferred at 600 MHz) at 300 MHz
Two input clocks (K and K) for precise DDR timing
❐
SRAM uses rising edges only
Two input clocks for output data (C and C) to minimize clock
skew and flight time mismatches
Echo clocks (CQ and CQ) simplify data capture in high-speed
systems
Single multiplexed address input bus latches address inputs
for read and write ports
Separate port selects for depth expansion
Synchronous internally self-timed writes
QDR-II operates with 1.5 cycle read latency when the Delay
Lock Loop (DLL) is enabled
Operates as a QDR-I device with 1 cycle read latency in DLL
off mode
Available in x 8, x 9, x 18, and x 36 configurations
Full data coherency, providing most current data
Core V
DD
= 1.8 (± 0.1V); IO V
DDQ
= 1.4V to V
DD
Available in 165-Ball FBGA package (15 x 17 x 1.4 mm)
Offered in both Pb-free and non Pb-free packages
Variable drive HSTL output buffers
JTAG 1149.1 compatible test access port
Delay Lock Loop (DLL) for accurate data placement
■
■
■
■
Functional Description
The CY7C1511AV18, CY7C1526AV18, CY7C1513AV18, and
CY7C1515AV18 are 1.8V Synchronous Pipelined SRAMs,
equipped with QDR™-II architecture. QDR-II architecture
consists of two separate ports: the read port and the write port to
access the memory array. The read port has dedicated data
outputs to support read operations and the write port has
dedicated data inputs to support write operations. QDR-II archi-
tecture has separate data inputs and data outputs to completely
eliminate the need to “turn-around” the data bus that exists with
common IO devices. Each port can be accessed through a
common address bus. Addresses for read and write addresses
are latched on alternate rising edges of the input (K) clock.
Accesses to the QDR-II read and write ports are completely
independent of one another. To maximize data throughput, both
read and write ports are equipped with DDR interfaces. Each
address location is associated with four 8-bit words
(CY7C1511AV18), 9-bit words (CY7C1526AV18), 18-bit words
(CY7C1513AV18), or 36-bit words (CY7C1515AV18) that burst
sequentially into or out of the device. Because data can be trans-
ferred into and out of the device on every rising edge of both input
clocks (K and K and C and C), memory bandwidth is maximized
while simplifying system design by eliminating bus
“turn-arounds”.
Depth expansion is accomplished with port selects, which
enables each port to operate independently.
All synchronous inputs pass through input registers controlled by
the K or K input clocks. All data outputs pass through output
registers controlled by the C or C (or K or K in a single clock
domain) input clocks. Writes are conducted with on-chip
synchronous self-timed write circuitry.
■
■
■
■
■
■
■
■
■
■
■
■
■
■
■
Selection Guide
Description
Maximum Operating Frequency
Maximum Operating Current
x8
x9
x18
x36
300 MHz
300
930
940
1020
1230
278 MHz
278
865
870
950
1140
250 MHz
250
790
795
865
1040
200 MHz
200
655
660
715
850
167 MHz
167
570
575
615
725
Unit
MHz
mA
Cypress Semiconductor Corporation
Document Number: 001-06985 Rev. *D
•
198 Champion Court
•
San Jose
,
CA 95134-1709
•
408-943-2600
Revised June 14, 2008
[+] Feedback