EEWORLDEEWORLDEEWORLD

Part Number

Search

C222G102C1G5CR

Description
CAPACITOR, CERAMIC, MULTILAYER, 200 V, C0G, 0.001 uF, THROUGH HOLE MOUNT
CategoryPassive components   
File Size1MB,16 Pages
ManufacturerKEMET
Websitehttp://www.kemet.com
Download Datasheet Parametric View All

C222G102C1G5CR Overview

CAPACITOR, CERAMIC, MULTILAYER, 200 V, C0G, 0.001 uF, THROUGH HOLE MOUNT

C222G102C1G5CR Parametric

Parameter NameAttribute value
Maximum operating temperature125 Cel
Minimum operating temperature-55 Cel
negative deviation1 %
positive deviation1 %
Rated DC voltage urdc200 V
Processing package descriptionRADIAL LEADED
stateACTIVE
terminal coatingTIN LEAD OVER NICKEL
Installation featuresTHROUGH HOLE MOUNT
Manufacturer SeriesC052
capacitance1.00E-3 uF
packaging shapeRECTANGULAR PACKAGE
Capacitor typeCERAMIC
Terminal shapeWIRE
Temperature Coefficient30ppm/Cel
Temperature characteristic codeC0G
multi-layerYes
MULTILAYER CERAMIC CAPACITORS/AXIAL
& RADIAL LEADED
Multilayer ceramic capacitors are available in a
variety of physical sizes and configurations, including
leaded devices and surface mounted chips. Leaded
styles include molded and conformally coated parts
with axial and radial leads. However, the basic
capacitor element is similar for all styles. It is called a
chip and consists of formulated dielectric materials
which have been cast into thin layers, interspersed
with metal electrodes alternately exposed on opposite
edges of the laminated structure. The entire structure is
fired at high temperature to produce a monolithic
block which provides high capacitance values in a
small physical volume. After firing, conductive
terminations are applied to opposite ends of the chip to
make contact with the exposed electrodes.
Termination materials and methods vary depending on
the intended use.
TEMPERATURE CHARACTERISTICS
Ceramic dielectric materials can be formulated with
Class III:
General purpose capacitors, suitable
a wide range of characteristics. The EIA standard for
for by-pass coupling or other applications in which
ceramic dielectric capacitors (RS-198) divides ceramic
dielectric losses, high insulation resistance and
dielectrics into the following classes:
stability of capacitance characteristics are of little or
no importance. Class III capacitors are similar to Class
Class I:
Temperature compensating capacitors,
II capacitors except for temperature characteristics,
suitable for resonant circuit application or other appli-
which are greater than ± 15%. Class III capacitors
cations where high Q and stability of capacitance char-
have the highest volumetric efficiency and poorest
acteristics are required. Class I capacitors have
stability of any type.
predictable temperature coefficients and are not
affected by voltage, frequency or time. They are made
KEMET leaded ceramic capacitors are offered in
from materials which are not ferro-electric, yielding
the three most popular temperature characteristics:
superior stability but low volumetric efficiency. Class I
C0G:
Class I, with a temperature coefficient of 0 ±
capacitors are the most stable type available, but have
30 ppm per degree C over an operating
the lowest volumetric efficiency.
temperature range of - 55°C to + 125°C (Also
known as “NP0”).
Class II:
Stable capacitors, suitable for bypass
X7R:
Class II, with a maximum capacitance
or coupling applications or frequency discriminating
change of ± 15% over an operating temperature
circuits where Q and stability of capacitance char-
range of - 55°C to + 125°C.
acteristics are not of major importance. Class II
Z5U:
Class III, with a maximum capacitance
capacitors have temperature characteristics of ± 15%
change of + 22% - 56% over an operating tem-
or less. They are made from materials which are
perature range of + 10°C to + 85°C.
ferro-electric, yielding higher volumetric efficiency but
less stability. Class II capacitors are affected by
Specified electrical limits for these three temperature
temperature, voltage, frequency and time.
characteristics are shown in Table 1.
SPECIFIED ELECTRICAL LIMITS
Parameter
Dissipation Factor: Measured at following conditions.
C0G – 1 kHz and 1 vrms if capacitance >1000pF
1 MHz and 1 vrms if capacitance 1000 pF
X7R – 1 kHz and 1 vrms* or if extended cap range 0.5 vrms
Z5U – 1 kHz and 0.5 vrms
Dielectric Stength: 2.5 times rated DC voltage.
Insulation Resistance (IR): At rated DC voltage,
whichever of the two is smaller
Temperature Characteristics: Range, °C
Capacitance Change without
DC voltage
* MHz and 1 vrms if capacitance
100 pF on military product.
Temperature Characteristics
C0G
X7R
2.5%
(3.5% @ 25V)
Z5U
0.10%
4.0%
Pass Subsequent IR Test
1,000 M
F
or 100 G
-55 to +125
0 ± 30 ppm/°C
1,000 M
F
or 100 G
-55 to +125
± 15%
1,000 M
or 10 G
F
+ 10 to +85
+22%,-56%
Table I
4
© KEMET Electronics Corporation, P.O. Box 5928, Greenville, S.C. 29606, (864) 963-6300
TouchGFX design by ddllxxrr
[font=微软雅黑][size=4][url=home.php?mod=space&uid=73808]@ddllxxrr[/url] [url=https://en.eeworld.com/bbs/thread-1072807-1-1.html]【TouchGFX Design】Installation and simple experience[/url] [url=https://bbs....
okhxyyo stm32/stm8
As the party A, it's a bit painful...
As a low-level developer who has worked for 10 years, should I be proud or sad? Some people say that 10 years is a long time, and I should have gotten a job and a salary that is frighteningly high... ...
懒猫爱飞 Talking
Internal structure of ESP8266 chip
[i=s]This post was last edited by dcexpert on 2019-9-3 10:56[/i]High-resolution image (20M) [hide] High-resolution image link [/hide]...
dcexpert MicroPython Open Source section
EEWORLD University ---- Tektronix uses mixed signal oscilloscope to explore the secrets of the bus
Tektronix uses mixed signal oscilloscope to explore the secrets of the bus : https://training.eeworld.com.cn/course/26648...
hi5 Talking
Why choose 120Ω? The terminal resistance value recommended by the CAN standard
[i=s]This post was last edited by Jacktang on 2019-12-12 09:56[/i]The CAN bus terminal resistor, as the name implies, is a resistor added to the end of the bus. Although this resistor is small, it pla...
Jacktang RF/Wirelessly
Is there any sensor expert?
Is there any big guy who makes sensors? Please take me tothis article. This content is originally created by EEWORLD forum netizen Nie Yongzhong . If you want to reprint or use it for commercial purpo...
孽庸冢 MEMS sensors

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号