Further extensions of the CWR15 product are planned for later in 2009. A new case size will be added, and the voltage range will be
extended to 20 volts. Ratings of 100 µF at 4 volts to 10 µF at 20 volts will be included in this extension of the product line.
40
TBC Series
CWR15 MIL-PRF-55365/12
HOW TO ORDER
COTS-PLUS & MIL QPL (CWR15):
TBC L
Type
Case
Size
Established Reliability, COTS-Plus & Space Level
685
*
004
C
#
Packaging Inspection Level
S = Std.
B = Bulk
Conformance
R = 7" T&R
L = Group A
S = 13" T&R
M = MIL (JAN)
W = Waffle
CWR15
See page 5
for additional
packaging
options.
@
0
^
++
Surge Test
Option
00 = None
23 = 10 Cycles, +25ºC
24 = 10 Cycles,
-55ºC & +85ºC
45 = 10 cycles,
-55ºC & +85ºC
before Weibull
Capacitance Capacitance
Voltage
Standard or
Code
Tolerance
Code
Low ESR
pF code:
M = ±20% 004 = 4Vdc
Range
1st two digits
K = ±10% 006 = 6Vdc C = Std ESR
represent
J = ±5%
010 = 10Vdc
significant
015 = 15Vdc
figures 3rd
020 = 20Vdc
digit represents
multiplier
(number of
zeros to follow)
Reliability Grade
Qualification Termination Finish
Level
Weibull:
H = Solder Plated
0 = N/A
B = 0.1%/1000 hrs.
0 = Fused Solder
90% conf.
Plated
9 = SRC9000
C = 0.01%/1000 hrs.
8 = Hot Solder
90% conf.
Dipped
D = 0.001%/1000 hrs.
9 = Gold Plated
90% conf.
7 = Matte Sn
Z = Non-ER
(COTS-Plus only)
CWR15 P/N CROSS REFERENCE:
CWR15
Style
F
Voltage
Code
C = 4Vdc
D = 6Vdc
F = 10Vdc
C
Termination
Finish
H = Solder Plated
C = Hot Solder
Dipped
B = Gold Plated
685
Capacitance
Code
pF code:
1st two digits
represent
significant
figures 3rd digit
represents
number of zeros
to follow
*
Capacitance
Tolerance
J = ±5%
K = ±10%
M = ±20%
See page 5 for
additional
packaging
options.
–
Product Level
Designator
Weibull
B = 0.1
C = 0.01
D = 0.001
L
Case Size
+
Surge Test
Option
A = +25°C after Weibull
B = -55°C & +85°C
after Weibull
C = -55°C & +85°C
before Weibull
SPACE LEVEL OPTIONS TO SRC9000*:
TBC L
Type
Case
Size
685
*
004
C
L
@
9
^
++
Surge Test
Option
00 = 10 Cycles,
-55ºC & +85ºC
45 = 10 cycles,
-55ºC & +85ºC
before Weibull
Capacitance Capacitance
Voltage
Standard or Packaging Inspection Level
Code
Tolerance
Code
Low ESR
L = Group A
B = Bulk
pF code:
M = ±20% 004 = 4Vdc
Range
R = 7" T&R
1st two digits
K = ±10% 006 = 6Vdc C = Std ESR S = 13" T&R
represent
J = ±5%
010 = 10Vdc L = Low ESR W = Waffle
significant
015 = 15Vdc
figures 3rd
020 = 20Vdc
See page 5
digit represents
025 = 25Vdc
for additional
multiplier
035 = 35Vdc
(number of
packaging
zeros to follow)
050 = 50Vdc
options.
Reliability Grade
Qualification Termination Finish
Level
Weibull:
H = Solder Plated
9 = SRC9000 0 = Fused Solder
B = 0.1%/1000 hrs.
90% conf.
Plated
C = 0.01%/1000 hrs.
8 = Hot Solder
90% conf.
Dipped
D = 0.001%/1000 hrs.
9 = Gold Plated
90% conf.
*Contact factory for AVX SRC9000 Space Level SCD details.
TECHNICAL SPECIFICATIONS
Technical Data:
Capacitance Range:
Capacitance Tolerance:
Rated Voltage: (V
R
)
Category Voltage: (V
C
)
Surge Voltage: (V
s
)
Temperature Range:
Unless otherwise specified, all technical
0.47 µF to 68 µF
±5%; ±10%; ±20%
4
6
10
15
2.7
4
7
10
5.2
8
13
20
3.4
5
8
13
-55°C to +125°C
data relate to an ambient temperature of 25°C
85°C:
125°C:
85°C:
125°C:
20
13
26
16
41
42
Power
-55ºC
(%)
12
12
12
12
15
23
9
12
12
12
12
15
15
23
9
9
9
9
9
12
12
12
12
15
9
RATING & PART NUMBER REFERENCE
25ºC
Dissipation
Ripple
A
W
(100kHz)
0.025
0.05
0.045
0.09
0.045
0.09
0.045
0.09
0.045
0.09
0.040
0.20
0.025
0.05
0.025
0.05
0.045
0.09
0.045
0.09
0.045
0.09
0.040
0.08
0.040
0.08
0.040
0.10
0.025
0.05
0.025
0.05
0.025
0.05
0.025
0.05
0.025
0.05
0.045
0.09
0.045
0.09
0.045
0.09
0.045
0.09
0.040
0.08
0.025
0.03
85ºC
Ripple
V
(100kHz)
0.45
0.47
0.47
0.47
0.47
0.18
0.45
0.45
0.47
0.47
0.47
0.44
0.44
0.36
0.49
0.45
0.45
0.45
0.45
0.47
0.47
0.47
0.47
0.44
0.70
125ºC
Ripple
V
(100kHz)
0.20
0.21
0.21
0.21
0.21
0.08
0.20
0.20
0.21
0.21
0.21
0.20
0.20
0.16
0.22
0.20
0.20
0.20
0.20
0.21
0.21
0.21
0.21
0.20
0.31
TBC Series
CWR15 MIL-PRF-55365/12
CWR15 P/N
AVX MIL & COTS-Plus P/N
CWR15CK685*^L+
CWR15CK106*^R+
CWR15CK156*^R+
CWR15CK226*^R+
CWR15CK336*^R+
CWR15CK686*^A+
CWR15DK335*^L+
CWR15DK475*^L+
CWR15DK685*^R+
CWR15DK106*^R+
CWR15DK156*^R+
CWR15DK226*^A+
CWR15DK336*^A+
CWR15DK476*^A+
CWR15FK474*^L+
CWR15FK684*^L+
CWR15FK105*^L+
CWR15FK155*^L+
CWR15FK225*^L+
CWR15FK335*^R+
CWR15FK475*^R+
CWR15FK685*^R+
CWR15FK106*^R+
CWR15FK156*^R+
CWR15JK474*^R+
TBC L 685 * 004 C
TBC R 106 * 004 C
TBC R 156 * 004 C
TBC R 226 * 004 C
TBC R 336 * 004 C
TBC A 686 * 004 C
TBC L 335 * 006 C
TBC L 475 * 006 C
TBC R 685 * 006 C
TBC R 106 * 006 C
TBC R 156 * 006 C
TBC A 226 * 006 C
TBC A 336 * 006 C
TBC A 476 * 006 C
TBC L 474 * 010 C
TBC L 684 * 010 C
TBC L 105 * 010 C
TBC L 155 * 010 C
TBC L 225 * 010 C
TBC R 335 * 010 C
TBC R 475 * 010 C
TBC R 685 * 010 C
TBC R 106 * 010 C
TBC A 156 * 010 C
TBC L 474 * 020 C
#@0^+
# @ 0 ^ ++
# @ 0 ^ ++
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
# @ 0 ^ ++
# @ 0 ^ ++
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
Parametric Specifications by Rating per MIL-PRF-55365/12
Cap
DC Rated ESR @
DCL max
DF Max
@ 120Hz Voltage 100kHz
+25ºC
+85ºC
+125ºC
+25ºC
+(85/125)ºC
µF
V
Ohms
AVX SRC9000 P/N
Case
(µA)
(µA)
(µA)
(%)
(%)
@ 25ºC @ +85ºC @ +25ºC
TBC L 685 * 004 C L @ 9 ^ + L
6.8
4
10
0.5
5
6
8
16
TBC R 106 * 004 C L @ 9 ^ ++ R
10
4
6
0.5
5
6
8
16
TBC R 156 * 004 C L @ 9 ^ ++ R
15
4
6
0.6
6
7
8
16
TBC R 226 * 004 C L @ 9 ^ + R
22
4
6
0.9
9
11
8
16
TBC R 336 * 004 C L @ 9 ^ + R
33
4
6
1.3
13
16
10
20
TBC A 686 * 004 C L @ 9 ^ + A
68
4
1
2.7
27
33
15
30
TBC L 335 * 006 C L @ 9 ^ + L
3.3
6
10
0.5
5
6
6
12
TBC L 475 * 006 C L @ 9 ^ + L
4.7
6
10
0.5
5
6
8
16
TBC R 477 * 685 C L @ 9 ^ ++ R
6.8
6
6
0.5
5
6
8
16
TBC R 478 * 106 C L @ 9 ^ ++ R
10
6
6
0.6
6
7
8
16
TBC R 156 * 006 C L @ 9 ^ + R
15
6
6
0.9
9
11
8
16
TBC A 226 * 006 C L @ 9 ^ + A
22
6
6
1.4
14
17
10
20
TBC A 336 * 006 C L @ 9 ^ + A
33
6
6
2
20
24
10
20
TBC A 476 * 006 C L @ 9 ^ + A
47
6
4
2.8
28
34
15
30
TBC L 474 * 010 C L @ 9 ^ + L
0.47
10
12
0.5
5
6
6
12
TBC L 684 * 010 C L @ 9 ^ + L
0.68
10
10
0.5
5
6
6
12
TBC L 105 * 010 C L @ 9 ^ + L
1
10
10
0.5
5
6
6
12
TBC L 155 * 010 C L @ 9 ^ + L
1.5
10
10
0.5
5
6
6
12
TBC L 225 * 010 C L @ 9 ^ + L
2.2
10
10
0.5
5
6
6
12
TBC R 335 * 010 C L @ 9 ^ + R
3.3
10
6
0.5
5
6
8
16
TBC R 475 * 010 C L @ 9 ^ + R
4.7
10
6
0.5
5
6
8
16
TBC R 685 * 010 C L @ 9 ^ + R
6.8
10
6
0.7
7
8.5
8
16
TBC R 106 * 010 C L @ 9 ^ + R
10
10
6
1
10
12
8
16
TBC A 156 * 010 C L @ 9 ^ + A
15
10
6
1.5
15
18
10
20
TBC L 474 * 020 C L @ 9 ^ + L
0.47
20
24
0.5
5
6
6
12
Typical Ripple Data by Rating
85ºC
125ºC
25ºC
Ripple
Ripple
Ripple
A
A
V
(100kHz) (100kHz) (100kHz)
0.05
0.02
0.50
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.18
0.08
0.20
0.05
0.02
0.50
0.05
0.02
0.50
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.07
0.03
0.49
0.07
0.03
0.49
0.09
0.04
0.40
0.04
0.02
0.55
0.05
0.02
0.50
0.05
0.02
0.50
0.05
0.02
0.50
0.05
0.02
0.50
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.07
0.03
0.49
0.03
0.01
0.77
All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.
Established Reliability, COTS-Plus & Space Level
NOTE: AVX reserves the right to supply a higher voltage rating or tighter tolerance part in the same case size, to the same reliability standards.
TBC Series
TBC COTS-Plus
TBC COTS-Plus series extends the
range of CWR15. TBC is available
with Weibull grade “B” reliability and
all MIL-PRF-55365 surge test
options (“A”, “B” & “C”).
For Space Level applications, AVX
SRC9000 ratings are available as
shown in the rating table.
There are four termination finishes
available: solder plated, fused sol-
der plated, hot solder dipped and
gold plated (these correspond to
“H”, “K”, “C” and “B” termination,
respectively, per MIL-PRF 55365).
CASE DIMENSIONS:
millimeters (inches)
L
Code
EIA
Code
EIA
Metric
Length (L)
3.20 ±0.20
(0.126 ±0.008)
3.50
+0.20
-0.20
(0.138
-0.008
)
+0.008
+0.20
+0.008
-0.000
)
+0.20
-0.00
+0.008
-0.000
)
+0.20
-0.00
+0.008
-0.000
)
Width (W)
Height (H)
Termination
Spacing(S)
1.80 min.
(0.071 min.)
2.00 min.
0.40 min.
(0.016 min.)
0.55 min.
(0.022 min.)
0.70 min.
(0.027 min.)
Minimum
Termination
Length (Lt)
0.15
(0.006)
0.15 min.
0.10
(0.004)
0.15
(0.006)
0.15
(0.006)
Average
Mass
44.6mg
%
A
POLARITY BAND NOT TO
EXCEED CENTER LINE
1206 3216-18
1.60 ±0.20
1.60 ±0.20
(0.063 ±0.008) (0.063 ±0.008)
2.80
-0.10
+0.20
+0.008
B
1210 3528-15
1.50 max.
0.50
-0.00
+0.20
90.0mg
(0.110
-0.004
)
0.50
-0.00
(0.020
0.85
(0.033
1.35
(0.053
+0.20
+0.008
+0.008
-0.000
) (0.020
-0.000
)
+0.15
+0.15
0.85
-0.00
-0.00
+0.006
+0.006
-0.000
) (0.033
-0.000
)
+0.15
+0.15
1.35
-0.00
-0.00
+0.006
+0.006
-0.000
) (0.053
-0.000
)
H
S
Lt
W
%
K
0402 1005-07
L
0603 1608-10
1.00
-0.00
(0.039
1.60
(0.063
2.0mg
8.6mg
%
R
0805 2012-15
2.00
(0.079
29.9mg
CAPACITANCE AND RATED VOLTAGE, V
R
(VOLTAGE CODE) RANGE
(LETTER DENOTES CASE SIZE)
Capacitance
µF
Code
0.33
0.47
0.68
1.0
1.5
2.2
3.3
4.7
6.8
10
15
22
33
47
68
334
474
684
105
155
225
335
475
685
106
156
226
336
476
686
3V
4V
Voltage Rating DC (V
R
) at 85°C
6V
10V
16V
K/L
L
L
L
L
L/R
L/R
R
R
A
L
L
L
L
20V
L
25V
L
K
R
R
R
R
R
R
A
L
R
R
R/A
A
A
R
R
R
43
TBC Series
TBC COTS-Plus
HOW TO ORDER
COTS-PLUS:
TBC L
Type
Case
Size
685
*
004
C
#
@
0
^
++
Surge Test
Option
00 = None
23 = 10 Cycles, +25ºC
24 = 10 Cycles,
-55ºC & +85ºC
45 = 10 cycles,
-55ºC & +85ºC
before Weibull
Capacitance Capacitance
Voltage
Standard or
Code
Tolerance
Code
Low ESR
pF code:
M = ±20% 004 = 4Vdc
Range
1st two digits
K = ±10% 006 = 6Vdc C = Std ESR
represent
J = ±5%
010 = 10Vdc
significant
015 = 15Vdc
figures 3rd
020 = 20Vdc
digit represents
multiplier
(number of
zeros to follow)
Reliability Grade
Qualification Termination Finish
Packaging Inspection Level
S = Std.
Level
Weibull:
H = Solder Plated
B = Bulk
Conformance B = 0.1%/1000 hrs.
0 = N/A
0 = Fused Solder
R = 7" T&R
90% conf.
Plated
S = 13" T&R L = Group A
9 = SRC9000
C = 0.01%/1000 hrs.
8 = Hot Solder
W = Waffle
90% conf.
Dipped
D = 0.001%/1000 hrs.
9 = Gold Plated
See page 5
90% conf.
7 = Matte Sn
for additional
Z = Non-ER
(COTS-Plus only)
packaging
options.
None required
SPACE LEVEL OPTIONS TO SRC9000*:
TBC L
Type
Case
Size
685
*
004
C
L
@
9
^
++
Surge Test
Option
00 = 10 Cycles,
-55ºC & +85ºC
45 = 10 cycles,
-55ºC & +85ºC
before Weibull
Capacitance Capacitance
Voltage
Standard or Packaging Inspection Level
Code
Tolerance
Code
Low ESR
L = Group A
B = Bulk
pF code:
M = ±20% 004 = 4Vdc
Range
R = 7" T&R
1st two digits
K = ±10% 006 = 6Vdc C = Std ESR S = 13" T&R
represent
J = ±5%
010 = 10Vdc L = Low ESR W = Waffle
significant
015 = 15Vdc
figures 3rd
020 = 20Vdc
See page 5
digit represents
025 = 25Vdc
for additional
multiplier
035 = 35Vdc
(number of
packaging
zeros to follow)
050 = 50Vdc
options.
Reliability Grade
Qualification Termination Finish
Level
Weibull:
H = Solder Plated
9 = SRC9000 0 = Fused Solder
B = 0.1%/1000 hrs.
90% conf.
Plated
C = 0.01%/1000 hrs.
8 = Hot Solder
90% conf.
Dipped
D = 0.001%/1000 hrs.
9 = Gold Plated
90% conf.
*Contact factory for AVX SRC9000 Space Level SCD details.
TECHNICAL SPECIFICATIONS
Technical Data:
Capacitance Range:
Capacitance Tolerance:
Leakage Current DCL:
Rated Voltage (V
R
)
Category Voltage (V
C
)
Surge Voltage (V
S
)
Surge Voltage (V
S
)
Temperature Range:
All technical data relate to an ambient temperature of +25°C
Recently, I debugged the STM32F205USB communication and used two USBs of F205 , one HS and one FS. However, both used HS, and both acted as USB hosts to connect other USB peripherals. After debugging ...
[color=#333333][size=14px]Like ordinary instruments, after the electromagnetic flowmeter is installed and wired, before it is officially put into operation, you should check whether the following inst...
[i=s]This post was last edited by mzb2012 on 2019-5-7 10:45[/i] [b][size=5][color=RoyalBlue]1. Background[/color][/size][/b] CodeBug is a small board that looks like a bug. It is simple and interestin...
The battery of my HP laptop is swollen, model HT03XL. Where can I get a new battery? After-sales service said it would take a long time for the manufacturer to ship it, so I had to buy it myself. The ...
1. The instrument does not respond after the power button is triggered; 2. After booting up, the keyboard light is on but the display light is off; Now let’s follow the engineer from the Antai netw...[Details]
51 single chip microcomputer controls 3-digit 7-segment common cathode digital tube, P0 port controls abcdefg dp, P2.0-P2.3 controls 123. To make it display 123, 231, 321, 213...infinite loop at inte...[Details]
R&S®FPC spectrum analyzer product introduction: The R&S®FPC is a trinity: it is the only spectrum analyzer on the market that integrates the functions of three instruments. And, these are the three i...[Details]
Batteries, motors and electronic control systems are the three key components of new energy vehicles, among which the power battery is the most critical link, which can be said to be the "heart" of n...[Details]
Whether it is the main pipelines for water supply, drainage, heating, gas supply in the city, long-distance oil and gas pipelines, or process pipelines in factories, they are all important equipmen...[Details]
This paper discusses the hardware and software design methods of mobile power using the MC32P21 microcontroller.
A mobile power bank is a portable charger that integrates power supply and charg...[Details]
NXP's software-defined automotive platform will add a new family member in 2024: RFCOMS radar SAF86xx. This radar product was unveiled at the CES exhibition in Las Vegas not long ago. According to ...[Details]
The traditional constant current control of LED lamps is through AC/DC, and then through the DC/DC converter for constant current control. In the AC/DC converter, a filter capacitor is usually used a...[Details]
On May 31, influenced by the convening of the Apple Developer Conference and the exposure of Apple's AR/VR operating system, Apple industry chain concept stocks led the two markets today. Goert...[Details]
Generally speaking, the reliability of LEDs is characterized by half-life (i.e., the time it takes for the light output to decrease to half of its initial value), which is approximately between 1...[Details]
element14 launches Multicomp Pro range of innovative low voltage magnetic connectors This series of magnetic connectors have 360-degree rotation and self-mating functions, and can be quickly discon...[Details]
EEPROM write data process The first step is the I2C start signal, followed by the first byte, which is the I2C device address we talked about earlier, and selecting the "write" operation in the rea...[Details]
This article introduces a method of setting data using keys. 1. Using keys to set values In industrial control development, we often encounter such working conditions: using keys or touch keys on t...[Details]
Foreign designers use Arduino and WiFi technology to make LED lights that can be freely controlled by iPhone or Android. It not only saves electricity but also creates a romantic atmosphere. Each ligh...[Details]
On November 6, international research organization SNE Research released the latest data on global
electric vehicle
battery
usage from January to September 2024. The data showed that ...[Details]