EEWORLDEEWORLDEEWORLD

Part Number

Search

C066G102C5CK5CP

Description
CAPACITOR, CERAMIC, MULTILAYER, 200 V, C0G, 0.001 uF, THROUGH HOLE MOUNT
CategoryPassive components   
File Size1MB,16 Pages
ManufacturerKEMET
Websitehttp://www.kemet.com
Download Datasheet Parametric View All

C066G102C5CK5CP Overview

CAPACITOR, CERAMIC, MULTILAYER, 200 V, C0G, 0.001 uF, THROUGH HOLE MOUNT

C066G102C5CK5CP Parametric

Parameter NameAttribute value
Maximum operating temperature125 Cel
Minimum operating temperature-55 Cel
negative deviation1 %
positive deviation1 %
Rated DC voltage urdc200 V
Processing package descriptionRADIAL LEADED
stateACTIVE
terminal coatingTIN LEAD OVER NICKEL
Installation featuresTHROUGH HOLE MOUNT
Manufacturer SeriesC052
capacitance1.00E-3 uF
packaging shapeRECTANGULAR PACKAGE
Capacitor typeCERAMIC
Terminal shapeWIRE
Temperature Coefficient30ppm/Cel
Temperature characteristic codeC0G
multi-layerYes
MULTILAYER CERAMIC CAPACITORS/AXIAL
& RADIAL LEADED
Multilayer ceramic capacitors are available in a
variety of physical sizes and configurations, including
leaded devices and surface mounted chips. Leaded
styles include molded and conformally coated parts
with axial and radial leads. However, the basic
capacitor element is similar for all styles. It is called a
chip and consists of formulated dielectric materials
which have been cast into thin layers, interspersed
with metal electrodes alternately exposed on opposite
edges of the laminated structure. The entire structure is
fired at high temperature to produce a monolithic
block which provides high capacitance values in a
small physical volume. After firing, conductive
terminations are applied to opposite ends of the chip to
make contact with the exposed electrodes.
Termination materials and methods vary depending on
the intended use.
TEMPERATURE CHARACTERISTICS
Ceramic dielectric materials can be formulated with
Class III:
General purpose capacitors, suitable
a wide range of characteristics. The EIA standard for
for by-pass coupling or other applications in which
ceramic dielectric capacitors (RS-198) divides ceramic
dielectric losses, high insulation resistance and
dielectrics into the following classes:
stability of capacitance characteristics are of little or
no importance. Class III capacitors are similar to Class
Class I:
Temperature compensating capacitors,
II capacitors except for temperature characteristics,
suitable for resonant circuit application or other appli-
which are greater than ± 15%. Class III capacitors
cations where high Q and stability of capacitance char-
have the highest volumetric efficiency and poorest
acteristics are required. Class I capacitors have
stability of any type.
predictable temperature coefficients and are not
affected by voltage, frequency or time. They are made
KEMET leaded ceramic capacitors are offered in
from materials which are not ferro-electric, yielding
the three most popular temperature characteristics:
superior stability but low volumetric efficiency. Class I
C0G:
Class I, with a temperature coefficient of 0 ±
capacitors are the most stable type available, but have
30 ppm per degree C over an operating
the lowest volumetric efficiency.
temperature range of - 55°C to + 125°C (Also
known as “NP0”).
Class II:
Stable capacitors, suitable for bypass
X7R:
Class II, with a maximum capacitance
or coupling applications or frequency discriminating
change of ± 15% over an operating temperature
circuits where Q and stability of capacitance char-
range of - 55°C to + 125°C.
acteristics are not of major importance. Class II
Z5U:
Class III, with a maximum capacitance
capacitors have temperature characteristics of ± 15%
change of + 22% - 56% over an operating tem-
or less. They are made from materials which are
perature range of + 10°C to + 85°C.
ferro-electric, yielding higher volumetric efficiency but
less stability. Class II capacitors are affected by
Specified electrical limits for these three temperature
temperature, voltage, frequency and time.
characteristics are shown in Table 1.
SPECIFIED ELECTRICAL LIMITS
Parameter
Dissipation Factor: Measured at following conditions.
C0G – 1 kHz and 1 vrms if capacitance >1000pF
1 MHz and 1 vrms if capacitance 1000 pF
X7R – 1 kHz and 1 vrms* or if extended cap range 0.5 vrms
Z5U – 1 kHz and 0.5 vrms
Dielectric Stength: 2.5 times rated DC voltage.
Insulation Resistance (IR): At rated DC voltage,
whichever of the two is smaller
Temperature Characteristics: Range, °C
Capacitance Change without
DC voltage
* MHz and 1 vrms if capacitance
100 pF on military product.
Temperature Characteristics
C0G
X7R
2.5%
(3.5% @ 25V)
Z5U
0.10%
4.0%
Pass Subsequent IR Test
1,000 M
F
or 100 G
-55 to +125
0 ± 30 ppm/°C
1,000 M
F
or 100 G
-55 to +125
± 15%
1,000 M
or 10 G
F
+ 10 to +85
+22%,-56%
Table I
4
© KEMET Electronics Corporation, P.O. Box 5928, Greenville, S.C. 29606, (864) 963-6300
【Child care machine】+ ESP32S3-BOX factory_demo source code download, compilation and flashing process record
Preface: Because esp32s3 depends on several repositories, the download always times out and the download is incomplete, which leads to various errors in the compilation process. Next, I will record ho...
lingxin_yuhe DigiKey Technology Zone
Elk, a tiny JS engine for embedded systems
Elk is a small embeddable JavaScript engine that implements a small subset of ES6. ELK is designed for microcontroller development and allows code to be developed in JavaScript instead of writing it i...
dcexpert MicroPython Open Source section
A brief introduction to communication principles
The main content of "Communication Principles in Simple Terms" is derived from the author's "Communication Principles in Simple Terms" series on the Communication People's Home. The compilation inheri...
arui1999 Download Centre
The company is recruiting LAYOUT hardware engineers. Not an agency.
The company is hiringJob content:1. Schematic design2. PCB layout3. Sample debuggingJob requirements:1. Love your job, be dedicated, and be serious and careful.2. Have an electronic foundation and be ...
薇薇安雪雪 Talking about work
The analog signal is divided into two paths for signal processing!
I was bored and suddenly remembered a problem I encountered last year that was never solved: I have an analog signal that I want to split into two paths and use analog circuits with different function...
燕园技术宅 Analog electronics
WeChat applet to obtain or upload data to onenet
There may be a lot of bugs. The UI is also ugly. This is made by a novice for fun, so please don’t criticize me if you are a big shot! ! ! ! ! 1. Upload. If the id or api-key is incorrect, an error wi...
litongxue MicroPython Open Source section

Technical ResourceMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号