* Code C, MIL-C-22992, Left-Hand Thread. Connector designations depicted thus [ ] are for reference only and are not to be used in part number development.
BACKSHELL INTERFACE STANDARDS (See pages 15-17 for more information)
DESIG. SPEC.
SERIES
DESIG. SPEC.
SERIES
A
MIL-DTL-5015 MS3400
A
PATT 602
MIL-DTL-26482 2
B
MIL-DTL-5015 MS3100
AS81703
3
C
MIL-C-22992 MS173XX
MIL-DTL-83723 I & III
D
MIL-DTL-26482 1
40M39569
E
MIL-DTL-26500 Aluminum
DEF 5326-3
F
MIL-DTL-38999 I & II
EN 2997, 3646
40M38277
ESC 10, 11
PAN 6433-1
LN 29504
PATT 614
NFC93422 HE302
PATT 616
PAN 6432-1, -2
NFC93422
HE308, 9
DESIG. SPEC.
SERIES
G
MIL-C-28840
H
MIL-DTL-38999 III & IV
EN3645
J
MIL-C-81511 1, 2, 3 & 4
VG95329
K
MIL-DTL-83723 II
DESIG. SPEC.
L
EN3372
JN 1003
LN 29729
NFC93422
PAN 6433-2
PATT 615
VG 96912
S
PATT 105
PATT 603
PATT 608
SERIES
HE306
13
How
to Order
CONNECTOR DESIGNATOR
A THREAD*
REFERENCE
7/16 – 28 UNEF
M12 x 1 – 6H
1/2 – 20 UNF
1/2 – 28 UNEF
9/16 – 24 UNEF
M15 x 1 – 6H
5/8 – 24 UNEF
5/8 – 28 UN
11/16 – 24 UNEF
M18 x 1 – 6H
3/4 – 20 UNEF
13/16 – 20 UNEF
M22 x 1 – 6H
7/8 – 20 UNEF
7/8 – 28 UN
15/16 – 20 UNEF
M25 x 1 – 6H
1 – 20 UNEF
1 - 28 UN
1 1/16 – 18 UNEF
M28 x 1 – 6H
1 1/8 – 18 UNEF
1 1/8 – 28 UN
1 3/16 – 18 UNEF
M31 x 1 – 6H
1 1/4 – 18 UNEF
1 1.4 – 28 UN
1 5/16 – 18 UNEF
M34 x 1 - 6H
1 3/8 – 18 UNEF
1 3/8 – 28 UN
1 7/16 – 18 UNEF
M37 x 1 – 6H
1 1/2 – 18 UNEF
1 1/2 – 28 UN
1 9/16 – UNEF
1 5/8 – UNEF
1 3/4 – 18 UNS
1 7/8 – 16 UN
2 – 18 UNS
2 1/16 – 16 UNS
2 1/8 – 16 UN
2 1/4 – 16 UN
2 5/16 – 16 UNS
2 3/8 – 16 UN
2 1/2 – 16 UN
2 5/8 – 16 UN
2 3/4 – 16 UN
2 7/8 – 16 UN
3 – 16 UN
3 1/16 – 16 UN
B
DIA MAX
.590 (15.)
.650 (16.5)
.650 (16.5)
.650 (16.5)
.720 (18.3)
.770 (19.6)
.770 (19.6)
.770 (19.6)
.840 (21.3)
.890 (22.6)
.970 (24.6)
.970 (24.6)
1.030 (26.2)
1.090 (27.7)
1.030 (26.2)
1.090 (27.7)
1.150 (29.2)
1.220 (29.2)
1.150 (29.2)
1.220 (31.0)
1.280 (32.5)
1.340 (34.0)
1.280 (32.5)
1.340 (34.0)
1.410 (35.8)
1.470 (37.3)
1.410 (35.8)
1.470 (37.3
1.530 (38.9)
1.590 (40.4)
1.530 (38.9)
1.590 (40.4)
1.660 (42.2)
1.660 (42.2)
1.660 (42.2)
C
DIA MAX
.650 (16.5)
.770 (19.6)
.650 (16.5)
.770 (19.6)
.770 (19.6)
.820 (20.8)
.770 (19.6)
.890 (22.6)
.890 (22.6)
.940 (23.9)
.940 (23.9)
1.020 (29.2)
1.070 (26.2)
1.020 (25.9)
1.150 (29.2)
1.150 (29.2)
1.210 (30.7)
1.210 (30.7)
1.360 (34.5)
1.230 (31.2)
1.360 (34.5)
1.360 (34.5)
1.480 (37.6)
1.360 (34.5
1.480 (37.6)
1.530 (38.9)
1.600 (40.6)
1.480 (37.6)
1.600 (40.6)
D
DIA MAX
.770 (19.6)
E
DIA MAX
.690 (17.5)
.940 (24.8)
.690 (17.5)
How
to Order
GLENAIR
SYMBOL
A
B
C*
G*
J
LF
M
N
NC
NF
T
U
ZU**
ZN
*
**
W
N
A
M85049 SYMBOL
REFERENCE ONLY
FINISH
Cadmium Plate, Bright
Anodize, Black
Hard Coat, Anodic
Electroless Nickel
Cadmium Plate, Black
Cadmium Plate, Black
Reference Information
Standard Materials and Finishes
TABLE II - STANDARD FINISHES
SPECIFICATION(S)
AMS-QQ-P-416, Type I, Class 2
AMS-QQ-P-416, Type II, Class 3
AMS-A-8625, Type II, Class 2
AMS-A-8625, Type III, Class 1
Cadmium Plate, Olive Drab
Iridite, Gold Over Cadmium Plate Over MIL-C-5541, Class 3 AMS-QQ-P-416, Type II,
Electroless Nickel
Class 3 over AMS-C-26074, Class 4, Grade B
Cadmium Plate, Bright Over
Electroless Nickel
Cadmium Plate, Olive Drab Over
Electroless Nickel
Zinc Cobalt, Dark Olive Drab
Cadmium Plate, Olive Drab Over
Electroless Nickel
Cadmium Plate, Bright Over
Electroless Nickel
1000 Hour Corrosion Resistance
AMS-C-26074, Class 4, Grade B
AMS-QQ-P-416, Type II, Class 3 over Electroless Nickel
AMS-C-26074
96 Hour Corrosion Resistance
1000 Hour Corrosion Resistance
AMS-QQ-P-416, Type I, Class 3
ASTMB 733-90, SC2, Type I, Class 5, MIL-C-26074***
AMS-QQ-P-416, Type II, Class 3
AMS-QQ-P-416, Type II, Class 3
ASTMB 841-91, Over Electroless Nickel 1000 Hour Salt
Spray
Zinc-Nickel Alloy, Olive Drab
Anodize finish; not suitable for EMI Shielding or grounding applications.
Applicable to corrosion resisting steel backshells and accessories. Consult factory for other available finishes.
The following standard materials are used for the majority of Glenair
backshells and connector accessories. However, backshell compo-
nents are not limited to those items listed, but are representative of
the elements used in Glenair's general accessory products. Contact
Glenair for applicable specifications on items not listed below.
STANDARD MATERIALS - BACKSHELLS AND ACCESSORIES
COMPONENT
Machined components: such as backshell bodies, fabricated elbows, protective covers,
rotatable couplers, dummy stowage receptacles, lock nuts, G-spring support rings,
EMI ground rings, grommet followers, etc.
Die cast components: such as angular backshells, strain relief backshells, strain relief
bodies, strain relief saddles, special EMI ground rings, etc.
Backshells or strain reliefs: available in optional corrosion resisting steel; and
hardware: such as screws, washers, rivets, wire rope, sash chain, band straps, etc.
Elastomeric seals: such as O-rings, cable jacket seals, grommets, etc.
Anti-friction and thrust washers
Anti-rotation device
MATERIAL
Aluminum
SPECIFICATION
AMS-QQ-A-200
ASTMB221, 209
QQ-A-591
ASTMB85, 26
Corrosion Resisting Steel ASTMA582 (300 Series)
AMS-QQ-S-763
Silicone
ZZ-R-765, MIL-R-25988
Teflon
TFE
N/A
Corrosion Resistant
Material
Aluminum
BODY STRAP
Glenair offers an optional stainless steel body strap for
attaching protective covers as illustrated. To specify body
strap, add suffix letter C to the end of the part number. For
example 360AS001M1610M6C.
NOTES
On all length callouts, tolerance is ± .060 unless otherwise
specified.
Unless otherwise specified, the following other dimensional
tolerances will apply:
.xx = ± .03 (0.8)
.xxx = ± .015 (0.4)
Lengths = ± .060 (1.52)
Angles = ± 5°
Metric dimensions (mm) are indicated in parentheses
We know that the frequency spectrum of sound ranges from tens to thousands of hertz. If we can use the program to control the "high" level or low level of a certain port line of a single machine, a re...
Beetle_ESP32-C3 Arduino routine learningDocument NumberTN_TR0003_A0KeywordsArduino, ESP32-C3, WIFI, BLE, RISC-VsummaryUsing online information resources, by studying routines on DFRobot, CSDN, and git...
1. Introduction
In the previous article, we wrote about the driver of OLED. We also agreed that this article would write about UDP communication with the computer, and then display the information sen...
Currently, many IPC cameras on the market also have AI functions such as face recognition. When running the face recognition algorithm in python on a PC, the CPU load is 60-80% (in the case of imshow)...
I work in the hardware industry. Recently, while learning about FPGA, I have not yet fully grasped the knowledge about key debounce. For example, debounce processing needs to be performed when a key i...
"Robot Programming Design and Implementation" describes the contents related to robot programming design and implementation methods from the shallow to the deep, from simple to complex. It has 5 parts...
On December 18, Xinyuan Micro, a company listed on the Science and Technology Innovation Board, announced that it had been involved in a lawsuit with Dalian Dehao Optoelectronics due to a payment dis...[Details]
GE, which has been praised for its support of sustainable development by the UAE government, has announced that it will supply the Middle East’s largest 220 MW LV5 series solar inverters for the Du...[Details]
(Image source: Silicon Labs official website) According to foreign media reports, Silicon Labs, a supplier of in-vehicle radio solutions, has launched a new hybrid SDR (software defined radio) t...[Details]
1. AVR Studio4 AVR Studio4 is a free AVR download, debug and emulation tool officially released by ATMEL. It integrates a free assembly debugging interface. It supports almost all download and emulat...[Details]
51 single chip C language program based on ds18b20 temperature sensor
#include REG51.H
#define uchar unsigned char
#define uint unsigned int
sbit DQ=P1^1;
uchar code SEG7 ={0x3f,0x06,0x5b,0x4...[Details]
01Market Background
With the rapid development of science and technology and the advent of the 5G era, the autonomous driving function of automobiles has been increasingly widely used in real ...[Details]
The circuit above is a digital power supply designed by a foreigner using an AVR microcontroller.
It uses key input and LCD display, and only uses a single chip microcomputer and a few perip...[Details]
The circuit is shown in the figure. IC1 and C1 form a low-frequency oscillator of about 400HZ; IC2 and C3 form a high-frequency oscillator of about 37MHZ; the low-frequency signal output by ...[Details]
Recently, the China Electricity Council announced the results of the 2019 Electric Power Innovation Award. The project "Resistant Measurement Processing and Online Safety Analysis Technology and Ap...[Details]
Applications:
Hybrid Electric Vehicle Test Laboratory Application
challenge:
Based on PXI equipment and LabVIEW, it efficiently integrates the power synthesis box, motor test bench, power batte...[Details]
On August 1, 2012, Nissan announced that it had partially improved the minivan "Serena" and started selling it on the same day (Figure 1). The new Serena has increased the amount of regenerative el...[Details]
The energy-feeding shock absorber can not only reduce vibration for a moving car, but also recover the heat energy originally consumed by the traditional shock absorber, so it represents the mainst...[Details]
This code uses Proteus simulation, uses 51 single-chip microcomputer to simulate PWM, uses timer to obtain motor speed information, uses PID algorithm to control speed, speed, P, I, D can be set wi...[Details]
According to foreign media reports, on January 7, 2021, NODA released a demonstration video of its Hammerhead™ 3D vision platform for the first time, taking an important step towards truly safe mains...[Details]
To use a certain type of LCD on an ARM board, you often have to modify the LCD driver or device tree, which is very inconvenient.
In ARM40-A5, we store the configuration instructions of common...[Details]