EEWORLDEEWORLDEEWORLD

Part Number

Search

SIT9045AET13R25NEA1.000000

Description
LVCMOS Output Clock Oscillator, 1MHz Nom, PQFN, 4 PIN
CategoryPassive components    oscillator   
File Size789KB,13 Pages
ManufacturerSiTime
Environmental Compliance
Download Datasheet Parametric View All

SIT9045AET13R25NEA1.000000 Overview

LVCMOS Output Clock Oscillator, 1MHz Nom, PQFN, 4 PIN

SIT9045AET13R25NEA1.000000 Parametric

Parameter NameAttribute value
Is it Rohs certified?conform to
Objectid145138705997
package instructionSOLCC4,.1,49
Reach Compliance Codeunknown
maximum descent time2 ns
Frequency Adjustment - MechanicalNO
frequency stability50%
JESD-609 codee4
Installation featuresSURFACE MOUNT
Number of terminals4
Nominal operating frequency1 MHz
Maximum operating temperature105 °C
Minimum operating temperature-40 °C
Oscillator typeLVCMOS
Output load15 pF
Maximum output low current3 mA
Encapsulate equivalent codeSOLCC4,.1,49
physical size2.5mm x 2.0mm x 0.8mm
longest rise time2 ns
Filter levelAEC-Q100
Maximum supply voltage2.75 V
Minimum supply voltage2.25 V
Nominal supply voltage2.5 V
surface mountYES
maximum symmetry55/45 %
Terminal surfaceNickel/Palladium/Gold (Ni/Pd/Au)

SIT9045AET13R25NEA1.000000 Preview

SiT9045
AEC-Q100, 1 to 150 MHz EMI Reduction Oscillator
Features
Applications
Best acceleration sensitivity of 0.1 ppb/g
Spread spectrum for EMI reduction
Wide spread % option
Center spread: from ±0.125% to ±2%, ±0.125% step size
Down spread: -0.25% to -4% with -0.25% step size
Spread profile option: Triangular, Hershey-kiss, Random
Programmable rise/fall time for EMI reduction: 8 options,
0.25 to 40 ns
Extended temperature range (-55°C to 125°C)
Any frequency between 1 MHz and 150 MHz accurate to
6 decimal places
100% pin-to-pin drop-in replacement to quartz-based XO’s
Excellent total frequency stability as low as ±25 ppm
Low power consumption of 6.6 mA typical at 1.8V
Pin1 modes: Standby, output enable, or spread disable
LVCMOS output
Industry-standard packages
QFN: 2.0 x 1.6 mm
2
, 2.5 x 2.0 mm
2
, 3.2 x 2.5 mm
2
RoHS and REACH compliant, Pb-free, Halogen-free and
Antimony-free
Avionics systems
Field communication systems
Telemetry applications
Electrical Specifications
Table 1. Electrical Characteristics
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise
stated. Typical values are at 25°C and 3.3V supply voltage.
Parameters
Symbol
Min.
Typ.
Max.
Unit
Condition
Frequency Range
Output Frequency Range
f
1
150
MHz
Frequency Stability and Aging
Frequency Stability
[1]
F_stab
-25
-50
+25
+50
ppm
ppm
Inclusive of initial tolerance at 25°C, 1st year aging at 25°C, and
variations over operating temperature, rated power supply voltage.
Spread = Off.
Operating Temperature Range
Operating Temperature
Range
T_use
-40
-40
-40
-55
+85
+105
+125
+125
°C
°C
°C
°C
AEC-Q100 Grade 3
AEC-Q100 Grade 2
AEC-Q100 Grade 1
Extended cold AEC-Q100 Grade 1
Supply Voltage and Current Consumption
Supply Voltage
Vdd
1.62
2.25
2.52
2.7
2.97
2.25
Current Consumption
Idd
OE Disable Current
I_OD
Standby Current
I_std
1.8
2.5
2.8
3.0
3.3
7.9
6.6
5.3
5.0
2.6
0.6
1.98
2.75
3.08
3.3
3.63
3.63
9.5
8.0
6.5
6.0
9.0
5.0
V
V
V
V
V
V
mA
mA
mA
mA
A
A
No load condition, f = 148.5 MHz, Vdd = 2.5V to 3.3V
No load condition, f = 148.5 MHz, Vdd = 1.8V
f = 148.5 MHz, Vdd = 2.5V to 3.3V, OE = GND, Output in high-Z state
f = 148.5 MHz, Vdd = 1.8V, OE = GND, Output in high-Z state
ST
= GND, Vdd = 2.5V to 3.3V, Output is weakly pulled down
ST
= GND, Vdd = 1.8V, Output is weakly pulled down
Rev 1.01
August 13, 2020
www.sitime.com
SiT9045
AEC-Q100, 1 to 150 MHz EMI Reduction Oscillator
Table 1. Electrical Characteristics
(continued)
Parameters
Acceleration (g) sensitivity,
Gamma Vector
Symbol
F_g
Min.
Typ.
Max.
0.1
Unit
ppb/g
Condition
Low sensitivity grade; total gamma over 3 axes; 15 Hz to 2 kHz; MIL-
PRF-55310, computed per section 4.8.18.3.1
Rugged Characteristics
LVCMOS Output Characteristics
Duty Cycle
Rise/Fall Time
Output High Voltage
DC
Tr, Tf
VOH
45
43
90%
1.2
55
57
2.0
%
%
ns
Vdd
f = 1 to 137 MHz
f = 137.000001 to 150 MHz
20% - 80%, default derive strength
IOH = -4 mA (Vdd = 3.0V or 3.3V)
IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOH = -2 mA (Vdd = 1.8V)
IOL = 4 mA (Vdd = 3.0V or 3.3V)
IOL = 3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOL = 2 mA (Vdd = 1.8V)
Output Low Voltage
VOL
10%
Vdd
Input Characteristics
Input High Voltage
Input Low Voltage
Input Leakage Current
VIH
VIL
IL
70%
Startup Time
Enable/Disable Time
Resume Time
Spread Enable Time
Spread Disable Time
Cycle-to-cycle jitter
T_start
T_oe
T_resume
T_sde
T_sdde
T_ccj
Note:
1.
Contact SiTime
for ±20 ppm options.
-2.3
2.8
-24.6
3.2
10.5
10.8
30%
10
215
10
4
55
Vdd
Vdd
µA
µA
µA
µA
ms
ns
ms
µs
µs
Jitter
ps
ps
f = 148.5 MHz, Vdd = 2.5 to 3.3V, Spread = ON (or OFF)
f = 148.5 MHz, Vdd = 1.8V, Spread = ON (or OFF)
Pin 1, OE or
ST
Pin 1, OE or
ST
Pin1,
ST
logic low
Pin1,
ST
logic high
Pin1, OE / SD logic low
Pin1, OE / SD logic high
Measured from the time Vdd reaches its rated minimum value
f = 148.5 MHz. For other frequencies, T_oe = 100 ns + 3 * cycles
Measured from the time ST pin crosses 50% threshold
Measured from the time SD pin crosses 50% threshold
Measured from the time SD pin crosses 50% threshold
Startup and Resume Timing
Table 2. Spread Spectrum %
[3]
Ordering Code
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Center Spread
(%)
±0.125
±0.250
±0.390
±0.515
±0.640
±0.765
±0.905
±1.030
±1.155
±1.280
±1.420
±1.545
±1.670
±1.795
±1.935
±2.060
Down Spread
(%)
-0.25
-0.50
-0.78
-1.04
-1.29
-1.55
-1.84
-2.10
-2.36
-2.62
-2.91
-3.18
-3.45
-3.71
-4.01
-4.28
Table 3. Spread Profile
[2,3]
Spread Profile
Triangular
Hershey-kiss
Random
Notes:
2. In both Triangular and Hershey-kiss profiles, modulation rate is
employed with a frequency of ~31.25 kHz. In random profile,
modulation rate is ~ 8.6 kHz.
3. The random profile supports up to ±1.030% center spread or -
2.10% down spread (ordering codes A through H).
Rev 1.01
Page 2 of 13
www.sitime.com
SiT9045
AEC-Q100, 1 to 150 MHz EMI Reduction Oscillator
Table 4. Pin Description
Pin
1
Symbol
OE /
ST
/
NC / SD
Output
Enable
Standby
Functionality
H
[4]
: specified frequency output
L: output is high impedance. Only output driver is disabled.
H : specified frequency output
L: output is low (week pull down). Device goes to sleep mode.
Supply current reduced to I_std.
Pin1 has no function (Any voltage between 0 and Vdd or Open)
H: Spread = ON
L: Spread = OFF
Electrical ground
Oscillator output
Power supply voltage
[5]
[4]
Top View
OE /
/
NC / SD
1
4
VDD
No Connect
Spread
Disable
2
3
4
Notes:
GND
OUT
VDD
Power
Output
Power
GND
2
3
OUT
Figure 1. Pin Assignments
4. In OE or
ST
mode, a pull-up resistor of 10 kΩ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.
5. A capacitor of value 0.1 µF or higher between Vdd and GND is required.
Table 5. Absolute Maximum Limits
Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of
the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.
Parameter
Storage Temperature
Vdd
Electrostatic Discharge
Soldering Temperature (follow standard Pb free soldering guidelines)
Junction Temperature
[6]
Note:
6. Exceeding this temperature for extended period of time may damage the device.
Min.
-65
-0.5
Max.
150
4
2000
260
150
Unit
°C
V
V
°C
°C
Table 6. Maximum Operating Junction Temperature
[7]
Max Operating Temperature (ambient)
85°C
105°C
125°C
Note:
7. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.
Maximum Operating Junction Temperature
95°C
115°C
135°C
Table 7. Environmental Compliance
Parameter
Mechanical Shock
Mechanical Vibration
Temperature Cycle
Solderability
Moisture Sensitivity Level
Condition/Test Method
MIL-STD-883F, Method 2002
MIL-STD-883F, Method 2007
JESD22, Method A104
MIL-STD-883F, Method 2003
MSL1 @ 260°C
Rev 1.01
Page 3 of 13
www.sitime.com
SiT9045
AEC-Q100, 1 to 150 MHz EMI Reduction Oscillator
Timing Diagrams
Vdd
90% Vdd
Vdd
50% Vdd
T_resume
Pin 4 Voltage
T_start
No Glitch
[8]
during start up
ST Voltage
CLK Output
HZ
T_start: Time to start from power-off
CLK Output
HZ
T_resume: Time to resume from ST
Figure 2. Startup Timing
Figure 3. Standby Resume Timing (ST Mode Only)
Vdd
50% Vdd
OE Voltage
T_oe
Vdd
OE Voltage
50% Vdd
T_oe
CLK Output
HZ
T_oe: Time to re-enable the clock output
CLK Output
HZ
T_oe: Time to put the output in High Z mode
Figure 4. OE Enable Timing (OE Mode Only)
Figure 5. OE Disable Timing (OE Mode Only)
Vdd
50% Vdd
SD Voltage
T_sde
SD Voltage
Vdd
50% Vdd
Frequency
Deviation (%)
T_sdde
Modulation period = 32µs (31.25kHz)
Time (s)
Frequency
Deviation (%)
Time (s)
Figure 6. SD Enable Timing (SD Mode Only)
Note:
8. SiT9045 has “no runt” pulses and “no glitch” output during startup or resume.
Figure 7. SD Diable Timing (SD Mode Only)
Rev 1.01
Page 4 of 13
www.sitime.com
SiT9045
AEC-Q100, 1 to 150 MHz EMI Reduction Oscillator
Performance Plots
1.8 V
2.5 V
2.8 V
3.0 V
3.3 V
1.8 V
2.5 V
2.8 V
3.0 V
3.3 V
5.4
8.0
Current Consumption (mA)
5.2
5.0
4.8
4.6
4.4
0
20
40
60
80
100
120
140
OE Disable Current (mA)
7.5
7.0
6.5
6.0
5.5
5.0
4.5
4.0
0
20
40
60
80
100
120
140
Frequency (MHz)
Frequency (MHz)
Figure 8. Current Consumption vs Frequency
Figure 9. OE Disable Current vs Frequency
1.8 V
2.5 V
2.8 V
3.0 V
3.3 V
DUT1
DUT8
DUT15
DUT2
DUT9
DUT16
DUT3
FUT10
DUT17
DUT4
DUT11
DUT18
DUT5
DUT12
DUT19
DUT6
DUT13
DUT20
DUT7
DUT14
2.5
2.0
20
Frequency stability (ppm)
0
20
40
60
80
100
120
140
15
10
Standby Current (µA)
1.5
1.0
0.5
0.0
5
0
-5
-10
-15
-20
-40
-20
0
20
40
60
80
100
120
Frequency (MHz)
Temperature (°C)
Figure 10. Standby Current vs Frequency
Figure 11. Frequency vs Temperature
1.8V
90
2.5V
2.8V
3.0V
3.3V
Peak Cycle -to - Cycle Jitter (ps)
80
70
60
50
40
30
20
10
0
0
20
40
60
80
100
120
140
Frequency (MHz)
Figure 12. Cycle-to-cycle Jitter vs Frequency
(Spread profile: Triangular, Spread type: center,
Spread percentage: ±2.060%)
Rev 1.01
Page 5 of 13
www.sitime.com
【LSM6DSOX's MLC machine learning understanding】--Training data set display gadget
In [Understanding MLC Machine Learning of LSM6DSOX]--Sharing of Machine Learning Usage Tutorial , I introduced in detail the detailed usage and configuration process of the LSM6DSOX machine learning m...
justd0 ST MEMS Sensor Creative Design Competition
What is the difference between GD32F350 Timer 14 and Timer 2?
用Timer2产生PWM正常,但用类似的程序,Timer14没有PWM输出。void timer2_config(void) {timer_oc_parameter_struct timer_ocintpara;timer_parameter_struct timer_initpara;rcu_periph_clock_enable(RCU_TIMER2);timer_deinit(TIMER2)...
tianjiu GD32 MCU
Popular power supply design
by Russ Rathweg We recently visited customers in Asia and learned that every company is very focused on efficiency. A company in Beijing told us that the new EuP directives now have the " force of law...
alan000345 Microcontroller MCU
MAX232cse chip introduction
1. Serial port 232 chipMAX232cse chip introduction RS232 interface chip MAX232, SOP package mainly has the following models: MAX232CSE, MAX232ESE. If the suffix letter is "C", it means commercial grad...
Jacktang Analogue and Mixed Signal
[Fudan Micro FM33LG0 Series Development Board Review] Driving SPI TFT Display
I saw an LCD SPI screen for 9.9 yuan on Taobao and bought it. I found out that it was controlled by ST7735 chip. Generally, most of the ones sold on Taobao are 12864 or driven by ILI93XX, and there ar...
mameng Domestic Chip Exchange
Come to Infineon flagship store to find good things in autumn! Get coupons and win a 50-yuan JD card
Come to the Infineon flagship store to check in and complete the tasks, and you can get 100% Tmall store coupons, and you will also have a chance to win a 50 yuan JD card!Event time: From now until Oc...
EEWORLD社区 Integrated technical exchanges

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号