EEWORLDEEWORLDEEWORLD

Part Number

Search

SIT3521AC-2CF3023U1.000000Y

Description
LVDS Output Clock Oscillator, 1MHz Nom, QFN, 10 PIN
CategoryPassive components    oscillator   
File Size1MB,45 Pages
ManufacturerSiTime
Environmental Compliance
Download Datasheet Parametric View All

SIT3521AC-2CF3023U1.000000Y Overview

LVDS Output Clock Oscillator, 1MHz Nom, QFN, 10 PIN

SIT3521AC-2CF3023U1.000000Y Parametric

Parameter NameAttribute value
Is it Rohs certified?conform to
Objectid145145083536
package instructionLCC10,.12X.2,50/40
Reach Compliance Codeunknown
Other featuresENABLE/DISABLE FUNCTION; COMPLEMENTARY OUTPUT
maximum descent time0.47 ns
Frequency Adjustment - MechanicalNO
frequency stability10%
JESD-609 codee4
Installation featuresSURFACE MOUNT
Number of terminals10
Nominal operating frequency1 MHz
Maximum operating temperature70 °C
Minimum operating temperature-20 °C
Oscillator typeLVDS
Output load100 OHM, 2 pF
Encapsulate equivalent codeLCC10,.12X.2,50/40
physical size5.0mm x 3.2mm x 0.9mm
longest rise time0.47 ns
Maximum supply voltage3.3 V
Minimum supply voltage2.7 V
Nominal supply voltage3 V
surface mountYES
maximum symmetry55/45 %
Terminal surfaceNickel/Palladium/Gold (Ni/Pd/Au)
SiT3521
1 to 340 MHz Elite Platform I2C/SPI Programmable Oscillator
Description
The
SiT3521
is an ultra-low jitter, user programmable
oscillator which offers the system designer great flexibility
and functionality.
The device supports two in-system programming options
after powering up at a default, factory programmed startup
frequency:
Features
Any-frequency mode where the clock output can be
re-programmed to any frequency between 1 MHz and
340 MHz in 1 Hz steps
Digitally controlled oscillator (DCO) mode where the clock
output can be steered or pulled by up to ±3200 ppm with
5 to 94 ppt (parts per trillion) resolution.
The device’s default start-up frequency is specified in the
ordering code. User programming of the device is achieved
via I
2
C or SPI. Up to 16 I
2
C addresses can be specified by
the user either as a factory programmable option or via
hardware pins, enabling the device to share the I
2
C with
other I
2
C devices.
The SiT3521 utilizes SiTime’s unique DualMEMS
®
temperature sensing and TurboCompensation
®
technology
to deliver exceptional dynamic performance:
Programmable frequencies (factory or via I
2
C/SPI)
from 1 MHz to 340 MHz
Digital frequency pulling (DCO) via I
2
C/SPI
Output frequency pulling with perfect pull linearity
13 programmable pull range options to
±3200
ppm
Frequency pull resolution as low as 5 ppt (0.005 ppb)
0.21 ps typical integrated phase jitter (12 kHz to 20 MHz)
Integrated LDO for on-chip power supply noise filtering
0.02 ps/mV PSNR
-40°C to 105°C operating temperature
LVPECL, LVDS, or HCSL outputs
Programmable LVPECL, LVDS Swing
LVDS Common Mode Voltage Control
RoHS and REACH compliant, Pb-free, Halogen-free
and Antimony-free
Applications
Resistant to airflow and thermal shock
Resistant to shock and vibration
Superior power supply noise rejection
Combined with wide frequency range and user
programmability, this device is ideal for telecom, networking
and industrial applications that require a variety of
frequencies and operate in noisy environment.
Ethernet: 1/10/40/100/400 Gbps
G.fast and xDSL
Optical Transport: SONET/SDH, OTN
Clock and data recovery
Processor over-clocking
Low jitter clock generation
Server, storage, datacenter
Test and measurement
Broadcasting
Block Diagram
Package Pinout
(10-Lead QFN, 5.0 x 3.2 mm)
SD
SC
A/
M
LK ISO
10
9
OE / NC
OE / NC
GND
1
8
VDD
OUT-
OUT+
2
7
3
4
5
6
A1 A0
/N /N
C/ C/
M SS
O
SI
Figure 1. SiT3521 Block Diagram
Figure 2. Pin Assignments (Top view)
(Refer to
Table 14
for Pin Descriptions)
Rev 1.01
30 April 2021
www.sitime.com
200 Examples of Commonly Used DC Stabilized Power Supply Circuits
"200 Examples of Commonly Used DC Regulated Power Supply Circuit Applications" has seven chapters. It mainly introduces linear DC voltage regulated power supplies (conventional DC low-voltage power su...
arui1999 Download Centre
Technology geeks, look here! Basics of Hall Effect Magnetic Sensors
What is the Hall effect? Simply put, when current flows through a conductor and there happens to be an external magnetic field, a voltage will be generated in the perpendicular orthogonal direction of...
EE大学堂 Training Edition
Is there anyone who has done a high frequency injection control algorithm for PMSM?
Some time ago, I made a zero-low speed control simulation of sine wave injection and square wave injection, and recently I want to implement it in code. The code realizes high-frequency injection indu...
jelijck77 Motor Drive Control(Motor Control)
Questions about the TIMER0 and TIMER1 clocks of the GD32F303 chip
In the clock tree of GD32F303 in the chip manual, we can find that the clock frequency of TIMER0 is 120MHz, and that of TIMER1 is 60MHz. However, in the official routines, the clocks of timer0 and tim...
nizhi12345 GD32 MCU
RIGOL launches instrument exchange activity to exchange old instruments for new ones
No "epidemic" as a reward, "ritual" old replaced with newSpring is here, flowers are blooming Spring is here To give back to customers and partners who have worked side by side with RIGOL RIGOL launch...
eric_wang Integrated technical exchanges
How to Desolder a Stamp Hole Bluetooth Module
I need a Bluetooth module, but the manufacturer is out of stock. I only have the Bluetooth module core board. I have to buy it and disassemble the module. I don't know how to disassemble such a module...
flashtt Test/Measurement

Technical ResourceMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号