or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
1
gdx2fam_13
Lattice Semiconductor
Figure 1. ispGDX2 Block Diagram (256-I/O Device)
sysIO Bank
sysHSI
Block
ispGDX2 Family Data Sheet
sysIO Bank
SERDES
FIFO
GDX Block
SERDES
FIFO
sysHSI
Block
sysHSI
Block
sysCLOCK
PLL
SERDES
FIFO
SERDES
FIFO
GDX Block
sysCLOCK
PLL
sysHSI
Block
GDX Block
GDX Block
GDX Block
GDX Block
SERDES
SERDES
SERDES
SERDES
SERDES
sysHSI
Block
FIFO
FIFO
sysIO Bank
Introduction
The ispGDX2™ family is Lattice’s second generation in-system programmable generic digital crosspoint switch for
high speed bus switching and interface applications.
The ispGDX2 family is available in two options. The standard device supports sysHSI capability for ultra fast serial
communications while the lower-cost “E-series” supports the same high-performance FPGA fabric without the
sysHSI Block.
This family of switches combines a flexible switching architecture with advanced sysIO interfaces including high
performance sysHSI Blocks, and sysCLOCK PLLs to meet the needs of the today’s high-speed systems. Through
a muliplexer-intensive architecture, the ispGDX2 facilitates a variety of common switching functions.
The availability of on-chip control logic further enhances the power of these devices. A high-performance solution,
the family supports bandwidth up to 38Gbps.
Every device in the family has a number of PLLs to provide the system designer with the ability to generate multiple
clocks and manage clock skews in their systems.
sysIO Bank
sysIO Bank
GDX Block
GDX Block
SERDES
sysCLOCK
PLL
FIFO
FIFO
FIFO
FIFO
Global Routing Pool
(GRP)
sysHSI
Block
GDX Block
GDX Block
GDX Block
FIFO
SERDES
GDX Block
GDX Block
SERDES
SERDES
sysHSI
Block
FIFO
FIFO
sysIO Bank
GDX Block
GDX Block
GDX Block
FIFO
SERDES
FIFO
SERDES
FIFO
SERDES
sysHSI
Block
sysCLOCK
PLL
sysIO Bank
sysIO Bank
ISP & Boundary Scan
Test Port
2
Lattice Semiconductor
ispGDX2 Family Data Sheet
The sysIO interfaces provide system-level performance and integration. These I/Os support various modes of
LVCMOS/LVTTL and support popular high-speed standard interfaces such as GTL+, PCI-X, HSTL, SSTL, LVDS
and Bus-LVDS. The sysHSI Blocks further extend this capability by providing high speed serial data transfer capa-
bility.
Devices in the family can operate at 3.3V, 2.5V or 1.8V core voltages and can be programmed in-system via an
IEEE 1149.1 interface that is compliant with the IEEE 1532 standard. Voltages required for the I/O buffers are inde-
pendent of the core voltage supply. This further enhances the flexibility of this family in system designs.
Typical applications for the ispGDX2 include multi-port multi-processor interfaces, wide data and address bus mul-
tiplexing, programmable control signal routing and programmable bus interfaces. Table 1 shows the members of
the ispGDX2 family and their key features.
Architecture
The ispGDX2 devices consist of GDX Blocks interconnected by a Global Routing Pool (GRP). Signals interface
with the external system via sysIO banks. In addition, each GDX Block is associated with a FIFO and a sysHSI
Block to facilitate the transfer of data on- and off-chip. Figure 1 shows the ispGDX2 block diagram. Each GDX
Block can be individually configured in one of four modes:
• Basic (No FIFO or SERDES)
• FIFO Only
• SERDES Only
• SERDES and FIFO
Each sysIO bank has its own I/O power supply and reference voltage. Designers can use any output standard
within a bank that is compatible with the power supply. Any input standard may be used, providing it is compatible
with the reference voltage. The banks are independent.
Global Routing Pool (GRP)
The ispGDX2 architecture is organized into GDX Blocks, which are connected via a Global Routing Pool. The inno-
vative GRP is optimized for routability, flexibility and speed. All the signals enter via the GDX Block. The block sup-
plies these either directly or in registered form to the GRP. The GRP routes the signals to different blocks, and
provides separate data and control routing. The data path is optimized to achieve faster speed and routing flexibility
for nibble oriented signals. The control routing is optimized to provide high-speed bit oriented routing of control sig-
nals.
There are some restrictions on the allocation of pins for optimal bus routing. These restrictions are considered by
the software in the allocation of pins.
GDX Block
The blocks are organized in a “block” (nibble) manner, with each GDX Block providing data flow and control logic
for 16 I/O buffers. The data flow is organized as four nibbles, each nibble containing four Multiplexer Register
Blocks (MRBs). Data for the MRBs is provided from 64 lines from the GRP. Figure 2 illustrates the groups of signals
going into and out of a GDX Block.
Control signals for the MRBs are provided from the Control Array. The Control Array receives the 32 signals from
the GRP and generates 16 control signals: eight MUX Select, four Clock/Clock Enable, two Set/Reset and two Out-
put Enable. Each nibble is controlled via two MUX select signals. The remaining control signals go to all the MRBs.
Besides the control signals from the Control Array, the following global signals are available to the MRBs in each
GDX Block: four Clock/Clock Enable, one reset/preset, one power-on reset, two of four MUX select (two of two in
64 I/O), four Output Enable (two in 64 I/O) and Test Out Enable (TOE).
3
Lattice Semiconductor
MUX and Register Block (MRB)
ispGDX2 Family Data Sheet
Every MRB Block has a 4:1 MUX (I/O MUX) and a set of three registers which are connected to the I/O buffers,
FIFO and sysHSI Blocks. Multiple MRBs can be combined to form large multiplexers as described below. Figure 3
shows the structure of the MRB.
Each of the three registers in the MRB can be configured as edge-triggered D-type flip-flop or as a level sensitive
latch. One register operates on the input data, the other output data and the last register synchronizes the output
enable function. The input and output data signals can bypass each of their registers. The polarity of the data out
and output enable signals can be selected.
The Output and OE register share the same clock and clock enable signals. The Input register has a separate clock
and clock enable. The initialization signals of each register can be independently configured as Set or Reset. These
registers have programmable polarity control for Clock, Clock Enable and Set/Reset. The output enable register
input can be set either by one of the two output enables generated locally from the Control Array or from one of the
four (two in 64 I/O) Global OE enable pins. In addition to the local clock and clock enable signals, each MRB has
access to Global Clock, Clock Enable, Reset and TOE nets.
4
Lattice Semiconductor
Figure 2. GDX Block
GRP
32 bits
MUX
Control Select
8
8
ispGDX2 Family Data Sheet
GDX Block
sysIO Bank
Control Array
Nibble 0
OE
8
2
4 bits
MUX and Register
Block (MRB)
0
IN
OUT
8
2
OE
MUX and Register
Block (MRB)
1
IN
OUT
4 bits
8
2
4 bits
MUX and Register
Block (MRB)
2
OE
IN
OUT
8
OE
2
4 bits
MUX and Register
Block (MRB)
3
IN
OUT
8
2
16 bits
4
8
2
Nibble 1
MRBs 4-7
OE
IN
OUT
OE
IN
OUT
OE
IN
OUT
Nibble 2
MRBs 8-11
16 bits
4
8
2
16 bits
4
Nibble 3
MRBs 12-15
The output register of the MRB has a built-in bi-directional shift register capability. Each output register correspond-
ing to MRB “n”, receives data output from its two adjacent MRBs, MRB (n-1) and MRB (n+1), to provide shift regis-
ter capability. Like the output register, each input register of the MRB has built-in shift register capability. Each input
register can receive data from its two adjacent MRB input registers, to provide bi-directional shift register capability.
The chaining crosses GDX Block boundaries. The chain of input registers and the chain of output registers can be
I have just installed AD16 and downloaded the Admin plugin. At first, I could import DDB files normally. But after a few days, when I tried to import it again, it showed Invalid file name. Can I find ...
In portable medical devices and industrial automation involving temperature measurement, pressure measurement, industrial process control, 12-bit converters are ideal. However, if you consider the ent...
Chapter 4 GD32VF103C START RISC-V and Corex-M3 instruction testAddition, subtraction, multiplication and division operations should be used by everyone in programming. This article wants to see the di...
The BG22 Explorer Development Kit is an ultra-low-cost, small-footprint development and evaluation platform focused on rapid prototyping for Bluetooth LE IoT.
Silicon Labs designed the EFR32BG22 (BG22...
TCL is preparing to launch a new 5G mid-range phone early next year, and the whistleblower @Evan Blass has announced some of the parameters and appearance of the phone, which will be called TCL 20 ...[Details]
Starsky Robotics, the company behind the first autonomous truck trials, said it has decided to scale back its over-the-road trucking fleet because of poor performance. Starsky Robotics said it is n...[Details]
OFweek Cup · OFweek 2023 China
Robot
Industry Annual Selection (abbreviated as OFweek Robot Awards 2023) is jointly organized by OFweek, China's high-tech industry portal, and its authorita...[Details]
The 10th China (Western) Electronic Information Expo is a tribute to the 10th anniversary of Western Electronic Information July 14-16, 2022 Hall 2, 3, 4 and 5, New International Convention and Ex...[Details]
Direct digital frequency synthesis (DDS) is a new frequency synthesis technology that has developed rapidly at the end of the 20th century. It introduces advanced digital processing technology and met...[Details]
Author: Dr. Wang Qingpeng, Senior Engineer, Semiconductor Processing and Integration, Semiverse Solutions Department, Lam Group Continuous device shrinkage has resulted in smaller feature sizes,...[Details]
1. Introduction to Keithley Digital SourceMeter 2400 series products: Keithley's family of digital sourcemeters are designed for test applications that require a tight combination of source and measu...[Details]
On July 31, CCID Consulting released the "2024 China County Economy High-Quality Development Research" which showed that Zaoyang ranked 74th in the national county economy, 6 places higher than in 202...[Details]
Microchip President and COO Ganesh Moorthy recently summarized the semiconductor market and Microchip's performance in 2020, and also looked forward to the hot markets and trends in 2021. Ganesh...[Details]
Although Samsung Galaxy S III has shipped 10 million units in just two months, many users may not be satisfied with the PenTile arrangement of its 4.8-inch 1280*720 HD Super AMOLED screen. Samsung'...[Details]
The Leeb hardness tester has high requirements for the roughness of the surface of the parts, and the stone must be ground. The portable Brinell hardness tester has lower requirements, because its lo...[Details]
In 2019, Apple officially launched its first true wireless noise-cancelling headphones, AirPods Pro. The product has been well received by consumers around the world for its excellent experien...[Details]
On March 28, the eye-catching Xiaomi Motors was officially launched, setting a record of 50,000 orders in 27 minutes. In the Xiaomi Motors Super Factory in Tongzhou, Beijing, 94 AMRs provided b...[Details]
Not long ago, the annual Google I/O conference was held as scheduled in Mountain View, California. At this grand gathering of Internet and technology developers, Google brought: Newly upgraded Andr...[Details]
Project Background:
The front-end computer room is the heart of the radio and television system and the distribution center for processing, distributing and transmitting various...[Details]