Ordering Information .................................................................................................................................................................... 2
7.1. User Programming Interface ..................................................................................................................................... 19
7.2. Start-up output frequency and signaling types .......................................................................................................... 19
8.1. Any-frequency function ............................................................................................................................................. 20
9 I C/SPI Control Registers...................................................................................................................................................... 29
9.1. Register Address: 0x00. DCO Frequency Control Least Significant Word (LSW) .................................................... 29
9.2. Register Address: 0x01. OE Control, DCO Frequency Control Most Significant Word (MSW) ................................. 30
9.3. Register Address: 0x02. DCO PULL RANGE CONTROL ........................................................................................ 31
9.4. Register Address: 0x03. Flac-N PLL Integer Value and Flac-N PLL Fraction MSW ................................................. 32
9.6. Register Address: 0x05. PostDiv, Driver Control ...................................................................................................... 33
9.7. Register Address: 0x06. mDriver, Driver Control ...................................................................................................... 34
2
10 I C Operation ........................................................................................................................................................................ 35
2
10.1. I C protocol ............................................................................................................................................................... 35
2
10.2. I C Timing Specification ............................................................................................................................................ 37
2
10.3. I C Device Address Modes ....................................................................................................................................... 38
Dimensions and Patterns ........................................................................................................................................................... 45
Additional Information ................................................................................................................................................................ 46
Revision History ......................................................................................................................................................................... 47
Rev 0.991
Page 3 of 47
www.sitime.com
SiT3521
1 to 340 MHz Elite™ I
2
C/SPI Programmable Oscillator
1 Electrical Characteristics
PRELIMINARY
All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with
standard output terminations shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics – Common to LVPECL, LVDS and HCSL
Parameter
Output Frequency Range
Frequency Stability
Symbol
f
F_stab
Min.
1
-10
-20
-25
-50
First Year Aging
Operating Temperature Range
F_1y
T_use
–
-20
-40
-40
Supply Voltage
Vdd
2.97
2.7
2.52
2.25
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
Duty Cycle
Start-up Time
Output Enable/Disable Time –
Hardware control via OE pin
Output Enable/Disable Time –
Software control via I
2
C/SPI
VIH
VIL
Z_in
DC
T_start
T_oe_hw
70%
–
–
45
–
–
Typ.
–
–
–
–
–
±1
–
–
–
3.3
3.0
2.8
2.5
–
–
100
–
–
–
Max.
340
+10
+20
+25
+50
–
+70
+85
+105
Supply Voltage
3.63
3.3
3.08
2.75
–
30%
–
55
3.0
3.8
V
V
V
V
Vdd
Vdd
kΩ
%
ms
µs
Measured from the time Vdd reaches its rated minimum value
Measured from the time OE pin reaches rated VIH and VIL to
the time clock pins reach 90% of swing and high-Z.
See
Figure 9
and
Figure 10
Measured from the time the last byte of command is
transmitted via I
2
C/SPI (reg1) to the time clock pins reach 90%
of swing and high-Z. See
Figure 30
and
Figure 31
OE pin
OE pin
OE pin, logic high or logic low
Unit
MHz
ppm
ppm
ppm
ppm
ppm
°C
°C
°C
1 -year aging at 25°C
Extended Commercial
Industrial
Extended Industrial. Available only for I C operation, not SPI.
2
st
Condition
Factory or user programmable, accurate to 6 decimal places
Inclusive of initial tolerance, operating temperature, rated
power supply voltage and load variations.
Frequency Range
Frequency Stability
Temperature Range
Input Characteristics – OE Pin
Output Characteristics
Startup and Output Enable/Disable Timing
T_oe_sw
–
–
6.5
µs
Rev 0.991
Page 4 of 47
www.sitime.com
SiT3521
1 to 340 MHz Elite™ I
2
C/SPI Programmable Oscillator
Table 2. Electrical Characteristics – LVPECL Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
PRELIMINARY
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Maximum Output Current
Idd
I_OE
I_leak
I_driver
–
–
–
–
–
–
0.15
–
89
58
–
32
mA
mA
A
mA
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Maximum average current drawn from OUT+ or OUT-
Output Characteristics
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
VOH
VOL
V_Swing
Tr, Tf
Vdd - 1.1V
Vdd - 1.9V
1.2
–
–
–
1.6
225
Vdd - 0.7V
Vdd - 1.5V
2.0
290
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[3]
Note:
3. Measured according to JESD65B.
T_jitt
–
0.225
0.1
0.225
0.11
1
0.340
0.14
0.340
0.15
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3V or 2.5V
V
V
V
ps
See
Figure 5
See
Figure 5
See
Figure 6
20% to 80%, see
Figure 6
Table 3. Electrical Characteristics – LVDS Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Idd
I_OE
I_leak
–
–
–
–
–
0.15
80
61
–
mA
mA
A
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Output Characteristics
Differential Output Voltage
Delta VOD
Offset Voltage
Delta VOS
Rise/Fall Time
VOD
ΔVOD
VOS
ΔVOS
Tr, Tf
250
–
1.125
–
–
–
–
–
–
400
455
50
1.375
50
470
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[4]
Note:
4. Measured according to JESD65B.
T_jitt
–
0.21
0.1
0.21
0.1
1
0.275
0.12
0.367
0.12
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3V or 2.5V
mV
mV
V
mV
ps
f = 156.25MHz See
Figure 7
See
Figure 7
See
Figure 7
See
Figure 7
Measured with 2 pF capacitive loading to GND, 20% to 80%,
[i=s]This post was last edited by DDZZ669 on 2020-10-17 21:37[/i]SD card, namely Secure Digital card (Secure Digital), GD32's SDIO interface can be used to drive SD card. In addition, SDIO also define...
I would like to ask what the load current and load voltage in the book Circuit Design Based on Arithmetic Units and Analog Integrated Circuits mean. I can't understand why the simulation results I got...
Generally speaking, CC1310 uses common commands: CMD_PROP_TX, CMD_PROP_RX to send and receive data, and these two commands limit the data length to 255 bytes. If the customer has more than 255 bytes o...
(1) Why do we usually introduce feedback networks in amplifier circuits?The main purpose of introducing negative feedback is to make the amplifier circuit work in the linear region and make the output...
OCP China Day 2021 will be held at Kerry Hotel Beijing on July 27. We sincerely invite you to participate in this conference. The theme of this conference is "Another Decade of Open Computing: Carbon ...
According to foreign media techpowerup, Samsung Electronics today officially announced the world's first computer equipped with MRAM memory. The relevant paper was published on the Nature website and...[Details]
Recently, at the Autonomous Driving Vehicle Industry Implementation and Demonstration Operation Forum, Beijing's Intelligent Connected Vehicle Policy Pilot Zone officially opened the autonomous drivi...[Details]
This program implements the interrupt of serial port asynchronous communication microcontroller program design example. The language used in this program is Intel's MCS-51 microcontroller language. ...[Details]
On the morning of October 23, the groundbreaking ceremony of the Changxing New Energy Battery Production Base Project of Jiewei Power was held in Changxing Economic and Technological Development Zo...[Details]
Three-phase alternating current is a form of transmission of electrical energy, referred to as three-phase power. Three-phase AC is a power supply composed of three AC potentials with the same freque...[Details]
The world's first 5G car is coming! On May 13, Human Horizons HiPhi Auto announced that it will jointly launch the world's first 5G in-vehicle mobile network service with China Telecom, officially...[Details]
Urban street lighting is an indispensable public facility in people's daily life. It is understood that the current power consumption of street lighting in China accounts for about 15% of the total p...[Details]
In 2019, the total size of the automotive electronics market reached US$35.3 billion, of which traditional automotive core electronic components accounted for about 65%, and digitalization and electr...[Details]
In the critical year of the conclusion of the 13th Five-Year Plan and the decisive victory in building a moderately prosperous society in all respects, facing the challenges of my country's economi...[Details]
No one expected that Wei Xiaoli had spent so much money on hardware and software, and that his leading advantage in autonomous driving would be surpassed by Mercedes-Benz? Recently, some media repo...[Details]
introduction
With the advent of the System on Chip (SoC) era, programmable logic devices (including complex programmable logic devices (CPLD) and field programmable gate arrays (FPGA)) (wi...[Details]
This week, American investment institution Mangrove Capital Partners released the 2019 "Voice Technology Report" titled "Voice: Welcome to the Next Generation of Disruptors". This report summarizes t...[Details]
The main thing to protect the oscilloscope is to prevent dust and moisture. Usually, it should be placed in a dry room and covered with a cloth when not in use. After using it for a period of time, u...[Details]
As the domestic passenger car market enters the traditional peak sales season of "Golden September",
the retail penetration rate of
new energy
passenger cars has exceeded 50% for three conse...[Details]