PD -94916A
IRG4IBC20KDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
High switching speed optimized for up to 25kHz
with low V
CE(on)
Short Circuit Rating 10µs @ 125°C, V
GE
= 15V
Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
previous generation
IGBT co-packaged with HEXFRED
TM
ultrafast,
ultra-soft-recovery anti-parallel diodes for use in
bridge configurations
Industry standard TO-220 FULLPAK
Lead-Free
Features
Short Circuit Rated
UltraFast IGBT
C
V
CES
= 600V
G
E
V
CE(on) typ.
=
2.27V
@V
GE
= 15V, I
C
= 6.3A
n-channel
Benefits
Generation 4 IGBTs offer highest efficiencies available
maximizing the power density of the system
IGBTs optimized for specific application conditions
HEXFRED
TM
diodes optimized for performance with IGBTs.
Minimized recovery characteristics reduce noise EMI
Designed to exceed the power handling capability of
equivalent industry-standard IGBTs
TO-220 FULLP
AK
Absolute Maximum Ratings
Parameter
V
CES
I
C
@ T
C
= 25°C
I
C
@ T
C
= 100°C
I
CM
I
LM
I
F
@ T
C
= 100°C
I
FM
t
sc
V
ISOL
V
GE
P
D
@ T
C
= 25°C
P
D
@ T
C
= 100°C
T
J
T
STG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Diode Continuous Forward Current
Diode Maximum Forward Current
Short Circuit Withstand Time
RMS Isolation Voltage, Terminal to Case, t = 1 min
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
600
11.5
6.3
23
23
6.3
23
10
2500
± 20
34
14
-55 to +150
300 (0.063 in. (1.6mm) from case)
10 lbfin (1.1 Nm)
Units
V
A
µs
V
W
°C
Thermal Resistance
Parameter
R
θJC
R
θCS
R
θJA
Wt
Junction-to-Case - IGBT
Junction-to-Case - Diode
Junction-to-Ambient, typical socket mount
Weight
Typ.
2.0 (0.07)
Max.
3.7
5.5
65
Units
°C/W
g (oz)
www.irf.com
1
01/28/2010
IRG4IBC20KDPbF
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
V
(BR)CES
∆V
(BR)CES
/∆T
J
V
CE(on)
V
GE(th)
∆V
GE(th)
/∆T
J
g
fe
I
CES
V
FM
I
GES
Parameter
Min. Typ. Max. Units
Collector-to-Emitter Breakdown Voltage 600
V
Temperature Coeff. of Breakdown Voltage 0.49 V/°C
Collector-to-Emitter Saturation Voltage
2.27 2.8
3.01
V
2.43
Gate Threshold Voltage
3.0
6.0
Temperature Coeff. of Threshold Voltage
-10
mV/°C
Forward Transconductance
2.9 4.3
S
Zero Gate Voltage Collector Current
250
µA
1000
Diode Forward Voltage Drop
1.4 1.7
V
1.3 1.6
Gate-to-Emitter Leakage Current
±100 nA
Conditions
V
GE
= 0V, I
C
= 250µA
V
GE
= 0V, I
C
= 1.0mA
I
C
= 9.0A
V
GE
= 15V
See Fig. 2, 5
I
C
= 16A
I
C
= 9.0A, T
J
= 150°C
V
CE
= V
GE
, I
C
= 250µA
V
CE
= V
GE
, I
C
= 250µA
V
CE
= 100V, I
C
= 9.0A
V
GE
= 0V, V
CE
= 600V
V
GE
= 0V, V
CE
= 600V, T
J
= 150°C
I
C
= 8.0A
See Fig. 13
I
C
= 8.0A, T
J
= 150°C
V
GE
= ±20V
Switching Characteristics @ T
J
= 25°C (unless otherwise specified)
Q
g
Q
ge
Q
gc
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
t
sc
t
d(on)
t
r
t
d(off)
t
f
E
ts
L
E
C
ies
C
oes
C
res
t
rr
I
rr
Q
rr
di
(rec)M
/dt
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Diode Peak Reverse Recovery Current
Diode Reverse Recovery Charge
Diode Peak Rate of Fall of Recovery
During t
b
Min.
10
Typ. Max. Units
Conditions
34
51
I
C
= 9.0A
4.9 7.4
nC
V
CC
= 400V
See Fig.8
14
21
V
GE
= 15V
54
34
T
J
= 25°C
ns
180 270
I
C
= 9.0A, V
CC
= 480V
72 110
V
GE
= 15V, R
G
= 50Ω
0.34
Energy losses include "tail"
0.30
mJ and diode reverse recovery
0.64 0.96
See Fig. 9,10,14
µs
V
CC
= 360V, T
J
= 125°C
V
GE
= 15V, R
G
= 50Ω , V
CPK
< 500V
51
T
J
= 150°C,
See Fig. 10,11,14
37
I
C
= 9.0A, V
CC
= 480V
ns
220
V
GE
= 15V, R
G
= 50Ω
160
Energy losses include "tail"
0.85
mJ and diode reverse recovery
7.5
nH
Measured 5mm from package
450
V
GE
= 0V
61
pF
V
CC
= 30V
See Fig. 7
14
= 1.0MHz
37
55
ns
T
J
= 25°C See Fig.
55
90
T
J
= 125°C
14
I
F
= 8.0A
3.5 5.0
A
T
J
= 25°C See Fig.
4.5 8.0
T
J
= 125°C
15
V
R
= 200V
65 138
nC
T
J
= 25°C
See Fig.
124 360
T
J
= 125°C
16
di/dt = 200Aµs
240
A/µs T
J
= 25°C
See Fig.
210
T
J
= 125°C
17
2
www.irf.com
IRG4IBC20KDPbF
8
7
For both:
LOAD CURRENT (A)
6
5
Square wave:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
Power Dissipation =
9.5
W
4
3
2
60% of rated
voltage
I
Ideal diodes
1
0
0.1
1
10
100
f, Frequency (KHz)
Fig. 1
- Typical Load Current vs. Frequency
(Load Current = I
RMS
of fundamental)
100
100
I
C
, Collector-to-Emitter Current (A)
T
J
= 25
o
C
T
J
= 150
o
C
10
I
C
, Collector-to-Emitter Current (A)
10
T
J
= 150
o
C
T
J
= 25
o
C
V
CC
= 50V
5µs PULSE WIDTH
5
10
15
20
1
V
GE
= 15V
20µs PULSE WIDTH
1
10
1
V
CE
, Collector-to-Emitter Voltage (V)
V
GE
, Gate-to-Emitter Voltage (V)
Fig. 2
- Typical Output Characteristics
Fig. 3
- Typical Transfer Characteristics
www.irf.com
3
IRG4IBC20KDPbF
12
5.0
10
V
CE
, Collector-to-Emitter Voltage(V)
V
GE
= 15V
80 us PULSE WIDTH
I
C
= 18 A
Maximum DC Collector Current(A)
4.0
8
6
3.0
4
I
C
=
9.0A
9A
2.0
I
C
= 4.5 A
2
0
25
50
75
100
125
150
T
C
, Case Temperature (
°
C)
1.0
-60 -40 -20
0
20
40
60
80 100 120 140 160
T
J
, Junction Temperature (
°
C)
Fig. 4
- Maximum Collector Current vs. Case
Temperature
10
Fig. 5
- Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z
thJC
)
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJC
+ T
C
0.0001
0.001
0.01
0.1
1
10
P
DM
t
1
t
2
0.01
0.00001
t
1
, Rectangular Pulse Duration (sec)
Fig. 6
- Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4IBC20KDPbF
800
V
GE
, Gate-to-Emitter Voltage (V)
100
V
GE
= 0V,
f = 1MHz
C
ies
= C
ge
+ C
gc ,
C
ce
SHORTED
C
res
= C
gc
C
oes
= C
ce
+ C
gc
20
V
CC
= 400V
I
C
= 9.0A
C, Capacitance (pF)
600
16
Cies
400
12
8
200
Coes
Cres
4
0
1
10
0
V
CE
, Collector-to-Emitter Voltage (V)
0
10
20
30
40
Q
G
, Total Gate Charge (nC)
Fig. 7 -
Typical Capacitance vs.
Collector-to-Emitter Voltage
0.8
Fig. 8
- Typical Gate Charge vs.
Gate-to-Emitter Voltage
10
Total Switching Losses (mJ)
Total Switching Losses (mJ)
V
CC
= 480V
V
GE
= 15V
T
J
= 25
°
C
I
C
= 9.0A
R
G
50
Ohm
=
Ω
V
GE
= 15V
V
CC
= 480V
I
C
=
18
A
0.7
1
I
C
=
9.0A
9
A
I
C
=
4.5
A
0.6
0.5
0
10
20
30
40
50
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
R
G
,
,
Gate
Resistance (
(Ohm)
R
G
Gate
Resistance
Ω )
T
J
, Junction Temperature (
°
C )
Fig. 9
- Typical Switching Losses vs. Gate
Resistance
Fig. 10
- Typical Switching Losses vs.
Junction Temperature
www.irf.com
5