PD - 94505
HEXFET
®
Power MOSFET
Applications
l
High frequency DC-DC converters
Benefits
l
Low Gate-to-Drain Charge to Reduce
Switching Losses
l
Fully Characterized Capacitance Including
Effective C
OSS
to Simplify Design, (See
App. Note AN1001)
l
Fully Characterized Avalanche Voltage
and Current
IRFR3410
IRFU3410
I
D
31A
V
DSS
100V
R
DS(on)
max
39mΩ
D-Pak
IRFR3410
I-Pak
IRFU3410
Absolute Maximum Ratings
Symbol
V
DS
V
GS
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
C
= 25°C
P
D
@T
A
= 25°C
dv/dt
T
J
T
STG
Parameter
Drain-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Maximum Power Dissipation
Maximum Power Dissipation
Linear Derating Factor
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Max.
100
± 20
31
22
125
110
3.0
0.71
15
-55 to + 175
300 (1.6mm from case )
Units
V
A
W
mW°C
V/ns
°C
Thermal Resistance
Parameter
R
θJC
R
θJA
R
θJA
Junction-to-Case
Junction-to-Ambient (PCB mount)*
Junction-to-Ambient
Typ.
–––
–––
–––
Max.
1.4
40
110
Units
°C/W
Notes
through
are on page 10
www.irf.com
1
9/23/02
IRFR/U3410
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
V
(BR)DSS
Drain-to-Source Breakdown Voltage
∆V
(BR)DSS
/∆T
J
Breakdown Voltage Temp. Coefficient
R
DS(on)
Static Drain-to-Source On-Resistance
V
GS(th)
Gate Threshold Voltage
I
DSS
I
GSS
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min.
100
–––
–––
2.0
–––
–––
–––
–––
Typ.
–––
0.11
34
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
V
V
GS
= 0V, I
D
= 250µA
––– V/°C Reference to 25°C, I
D
= 1mA
39
mΩ V
GS
= 10V, I
D
= 18A
4.0
V
V
DS
= V
GS
, I
D
= 250µA
20
V
DS
= 100V, V
GS
= 0V
µA
250
V
DS
= 80V, V
GS
= 0V, T
J
= 150°C
200
V
GS
= 20V
nA
-200
V
GS
= -20V
Dynamic @ T
J
= 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
oss
eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
33
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
37
10
11
12
27
40
13
1690
220
26
1640
130
250
Max. Units
Conditions
–––
S
V
DS
= 25V, I
D
= 18A
56
I
D
= 18A
–––
nC V
DS
= 50V
–––
V
GS
= 10V,
–––
V
DD
= 50V
–––
I
D
= 18A
ns
–––
R
G
= 9.1Ω
–––
V
GS
= 10V
–––
V
GS
= 0V
–––
V
DS
= 25V
–––
pF
ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 80V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 0V to 80V
Avalanche Characteristics
Parameter
E
AS
I
AR
Single Pulse Avalanche Energy
Avalanche Current
Typ.
–––
–––
Max.
140
18
Units
mJ
A
Diode Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 31
showing the
A
G
integral reverse
––– ––– 125
S
p-n junction diode.
––– ––– 1.3
V
T
J
= 25°C, I
S
= 18A, V
GS
= 0V
––– 84 –––
ns
T
J
= 25°C, I
F
= 18A
––– 260 –––
nC di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
2
www.irf.com
IRFR/U3410
1000
TOP
V
GS
100
ID, Drain-to-Source Current (A)
100
ID, Drain-to-Source Current (A)
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
V
GS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
4.5V
10
10
4.5V
20µs PULSE WIDTH
Tj = 25°C
1
0.1
1
10
100
1
0.1
1
20µs PULSE WIDTH
Tj = 175°C
10
100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
1000
3.0
RDS(on) , Drain-to-Source On Resistance
ID = 30A
VGS = 10V
ID, Drain-to-Source Current
(Α
)
100
2.0
10
T J = 25°C
(Normalized)
T J = 175°C
1.0
1
4.0
5.0
6.0
VDS = 50V
20µs PULSE WIDTH
7.0
8.0
9.0
0.0
-60 -40 -20
0
20
40 60 80 100 120 140 160 180
VGS , Gate-to-Source Voltage (V)
T J , Junction Temperature (°C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
www.irf.com
3
IRFR/U3410
100000
VGS = 0V,
f = 1 MHZ
Ciss = C + Cgd, Cds SHORTED
gs
Crss = C
gd
Coss
= Cds + Cgd
20
ID= 18A
VGS , Gate-to-Source Voltage (V)
16
10000
VDS = 80V
VDS= 50V
VDS= 20V
C, Capacitance (pF)
12
Ciss
1000
Coss
100
8
Crss
4
10
1
10
100
0
0
10
20
30
40
50
60
Q G Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
1000.0
1000
OPERATION IN THIS AREA
LIMITED BY RDS (on)
100.0
TJ = 175°C
10.0
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
100µsec
10
1msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1
10
10msec
1.0
TJ = 25°C
VGS = 0V
0.1
0.0
0.5
1.0
1.5
2.0
VSD, Source-toDrain Voltage (V)
100
1000
VDS , Drain-toSource Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRFR/U3410
32
LIMITED BY PACKAGE
28
ID , Drain Current (A)
V
DS
V
GS
R
G
V
GS
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1 %
R
D
D.U.T.
+
24
20
16
12
8
4
0
25
50
75
100
125
150
175
T C , Case Temperature (°C)
10%
V
GS
-
V
DD
Fig 10a.
Switching Time Test Circuit
V
DS
90%
Fig 9.
Maximum Drain Current Vs.
Case Temperature
t
d(on)
t
r
t
d(off)
t
f
Fig 10b.
Switching Time Waveforms
10
Thermal Response ( Z thJC )
1
D = 0.50
0.20
0.10
0.05
0.02
0.01
0.1
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5