PD - 95312A
IRFL024ZPbF
HEXFET
®
Power MOSFET
Features
l
l
l
l
l
l
Advanced Process Technology
Ultra Low On-Resistance
150°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
D
V
DSS
= 55V
R
DS(on)
= 57.5mΩ
G
S
I
D
= 5.1A
Description
This HEXFET
®
Power MOSFET utilizes the latest
processing techniques to achieve extremely low on-
resistance per silicon area. Additional features of
this design are a 150°C junction operating temperature,
fast switching speed and improved repetitive
avalanche rating . These features combine to make
this design an extremely efficient and reliable device
for use in a wide variety of applications.
SOT-223
Absolute Maximum Ratings
I
D
@ T
A
= 25°C
I
D
@ T
A
= 70°C
I
DM
Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
i
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Parameter
Max.
5.1
4.1
41
2.8
1.0
0.02
± 20
Units
A
P
D
@T
A
= 25°C Power Dissipation
P
D
@T
A
= 25°C Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
V
GS
E
AS
(Tested )
I
AR
E
AR
T
J
T
STG
i
j
i
i
d
h
W
W/°C
V
mJ
A
mJ
E
AS (Thermally limited)
Single Pulse Avalanche Energy
Avalanche Current
13
32
See Fig.12a, 12b, 15, 16
-55 to + 150
Single Pulse Avalanche Energy Tested Value
Ã
Repetitive Avalanche Energy
Operating Junction and
Storage Temperature Range
g
°C
Thermal Resistance
R
θJA
R
θJA
i
Junction-to-Ambient (PCB mount, steady state)
j
Junction-to-Ambient (PCB mount, steady state)
Parameter
Typ.
–––
–––
Max.
45
120
Units
°C/W
www.irf.com
1
09/16/10
IRFL024ZPbF
V
(BR)DSS
∆V
(BR)DSS
/∆T
J
R
DS(on)
V
GS(th)
gfs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
oss
eff.
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min. Typ. Max. Units
55
–––
–––
2.0
6.2
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
0.053
46.2
–––
–––
–––
–––
–––
–––
9.1
1.9
3.9
7.8
21
30
23
340
68
39
210
55
93
–––
–––
57.5
4.0
–––
20
250
200
-200
14
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
pF
ns
nC
nA
V
V/°C
mΩ
V
S
µA
Conditions
V
GS
= 0V, I
D
= 250µA
Reference to 25°C, I
D
= 1mA
V
GS
= 10V, I
D
= 3.1A
V
DS
= 25V, I
D
= 3.1A
V
DS
= 55V, V
GS
= 0V
V
DS
= 55V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
V
GS
= -20V
I
D
= 3.1A
V
DS
= 44V
V
GS
= 10V
V
DD
= 28V
I
D
= 3.1A
R
G
= 53
Ω
V
GS
= 10V
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 44V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 0V to 44V
e
V
DS
= V
GS
, I
D
= 250µA
e
e
f
Source-Drain Ratings and Characteristics
Parameter
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
–––
–––
–––
–––
–––
–––
–––
–––
15
9.8
5.1
A
41
1.3
23
15
V
ns
nC
Conditions
MOSFET symbol
showing the
integral reverse
G
S
D
Ã
p-n junction diode.
T
J
= 25°C, I
S
= 3.1A, V
GS
= 0V
T
J
= 25°C, I
F
= 3.1A, V
DD
= 28V
di/dt = 100A/µs
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Limited by T
Jmax
, starting T
J
= 25°C, L = 2.8mH
R
G
= 25Ω, I
AS
= 3.1A, V
GS
=10V.
Part not recommended for use above this value.
Pulse width
≤
1.0ms; duty cycle
≤
2%.
C
oss
eff. is a fixed capacitance that gives the same
charging time as C
oss
while V
DS
is rising from 0 to 80%
V
DSS
.
Limited by T
Jmax
, see Fig.12a, 12b, 15, 16 for typical
repetitive avalanche performance.
This value determined from sample failure population.
100% tested to this value in production.
When mounted on 1 inch square copper board.
When mounted on FR-4 board using minimum
recommended footprint.
2
www.irf.com
IRFL024ZPbF
100
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
10
BOTTOM
BOTTOM
10
4.5V
1
4.5V
1
0.1
1
30µs PULSE WIDTH
Tj = 25°C
10
100
0.1
0.1
1
30µs PULSE WIDTH
Tj = 150°C
10
100
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
100
12
Gfs, Forward Transconductance (S)
ID, Drain-to-Source Current
(Α)
10
8
6
4
2
T J = 25°C
T J = 150°C
10
T J = 150°C
TJ = 25°C
VDS = 25V
30µs PULSE WIDTH
4
5
6
7
8
9
10
V DS = 10V
0
0
2
4
6
8
10
12
ID,Drain-to-Source Current (A)
1.0
VGS, Gate-to-Source Voltage (V)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Typical Forward Transconductance
vs. Drain Current
www.irf.com
3
IRFL024ZPbF
10000
VGS = 0V,
f = 1 MHZ
Ciss = C gs + C gd, C ds SHORTED
Crss = C gd
Coss = C ds + C gd
12.0
ID= 3.1A
VGS, Gate-to-Source Voltage (V)
10.0
8.0
6.0
4.0
2.0
0.0
VDS= 44V
VDS= 28V
VDS= 11V
C, Capacitance(pF)
1000
Ciss
Coss
Crss
100
10
1
10
100
0
2
4
6
8
10
VDS, Drain-to-Source Voltage (V)
QG Total Gate Charge (nC)
Fig 5.
Typical Capacitance vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge vs.
Gate-to-Source Voltage
100
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
TJ = 150°C
10
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
10
100µsec
1
T A = 25°C
Tj = 150°C
Single Pulse
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
1msec
10msec
T J = 25°C
1
0.2
0.4
0.6
0.8
1.0
1.2
VGS = 0V
1.4
1.6
VSD, Source-to-Drain Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRFL024ZPbF
6
5
ID, Drain Current (A)
2.0
4
3
2
1
0
25
50
75
100
125
150
T A ,Ambient Temperature (°C)
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 3.1A
VGS = 10V
1.5
1.0
0.5
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J , Junction Temperature (°C)
Fig 9.
Maximum Drain Current vs.
Ambient Temperature
Fig 10.
Normalized On-Resistance
vs. Temperature
100
D = 0.50
Thermal Response ( Z thJA )
10
0.20
0.10
0.05
1
0.02
0.01
τ
J
τ
J
τ
1
τ
1
R
1
R
1
τ
2
R
2
R
2
R
3
R
3
τ
3
τ
2
τ
3
Ri (°C/W)
τi
(sec)
τ
C
0.000463
τ
5.0477
19.9479 0.636160
20.0169
21.10000
0.1
SINGLE PULSE
( THERMAL RESPONSE )
Ci=
τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.01
0.1
1
10
100
0.01
1E-006
1E-005
0.0001
0.001
t1 , Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5