Atmel ATmega169A/PA/329A/PA/3290A/PA/649A/P/6490A/P
8-bit Atmel Microcontroller with 16/32/64KB In-System Programmable Flash
SUMMARY
Features
•
•
High performance, low power Atmel
®
AVR
®
8-Bit Microcontroller
Advanced RISC architecture
– 130 powerful instructions – most single clock cycle execution
– 32 × 8 general purpose working registers
– Fully static operation
– Up to 16MIPS throughput at16MHz (Atmel ATmega169A/169PA/649A/649P)
– Up to 20 MIPS throughput at 20MHz (Atmel ATmega329A/329PA/3290A/3290PA/6490A/6490P)
– On-chip 2-cycle multiplier
High endurance non-volatile memory segments
– In-system self-programmable flash program memory
• 16Kbytes (Atmel ATmega169A/ATmega169PA)
• 32Kbytes (Atmel ATmega329A/ATmega329PA/ATmega3290A/ATmega3290PA)
• 64Kbytes (Atmel ATmega649A/ATmega649P/ATmega6490A/ATmega6490P)
– EEPROM
• 512bytes (ATmega169A/ATmega169PA)
• 1Kbytes (ATmega329A/ATmega329PA/ATmega3290A/ATmega3290PA)
• 2Kbytes (ATmega649A/ATmega649P/ATmega6490A/ATmega6490P)
– Internal SRAM
• 1Kbytes (ATmega169A/ATmega169PA)
• 2Kbytes (ATmega329A/ATmega329PA/ATmega3290A/ATmega3290PA)
• 4Kbytes (ATmega649A/ATmega649P/ATmega6490A/ATmega6490P)
– Write/erase cyles: 10,000 flash/100,000 EEPROM
– Data retention: 20 years at 85°C/100 years at 25°C
(1)
– Optional Boot Code Section with Independent Lock Bits
• In-System Programming by On-chip Boot Program
• True read-while-write operation
– Programming lock for software security
Atmel QTouch
®
library support
– Capacitive touch buttons, sliders and wheels
– Atmel QTouch and QMatrix acquisition
– Up to 64 sense channels
JTAG (IEEE std. 1149.1 compliant) Interface
– Boundary-scan capabilities according to the JTAG standard
– Extensive on-chip debug support
– Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
Peripheral features
– 4 × 25 segment LCD driver
(ATmega169A/ATmega169PA/ATmega329A/ATmega329PA/ATmega649A/ATmega649P)
– 4 × 40 segment LCD driver (ATmega3290A/ATmega3290PA/ATmega6490A/ATmega6490P)
– Two 8-bit Timer/Counters with Separate Prescaler and Compare mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare mode, and Capture mode
– Real Time Counter with separate oscillator
– Four PWM channels
– 8-channel, 10-bit ADC
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Universal Serial Interface with Start Condition Detector
– Programmable Watchdog Timer with Separate On-chip oscillator
– On-chip analog comparator
– Interrupt and Wake-up on pin change
Special microcontroller features
– Power-on reset and programmable Brown-out detection
– Internal calibrated oscillator
– External and internal interrupt sources
– Five sleep modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
I/O and packages
– 54/69 programmable I/O lines
– 64/100-lead TQFP, 64-pad QFN/MLF, and 64-pad DRQFN
Speed Grade:
– ATmega169A/169PA/649A/649P:
• 0 - 16MHz @ 1.8 - 5.5V
– ATmega3290A/3290PA/6490A/6490P:
• 0 - 20MHz @ 1.8 - 5.5V
Temperature range:
– -40°C to 85°C industrial
Ultra-low power consumption (picoPower
®
devices)
– Active mode:
• 1MHz, 1.8V: 215µA
• 32kHz, 1.8V: 8µA (including oscillator)
• 32kHz, 1.8V: 25µA (including oscillator and LCD)
– Power-down mode:
• 0.1µA at 1.8V
– Power-save mode:
• 0.6µA at 1.8V (Including 32kHz RTC)
• 750nA at 1.8V
•
•
•
•
•
•
•
•
•
8284ES–AVR–02/2013
2. Overview
The Atmel ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P is a low-power CMOS 8-bit micro-
controller based on the Atmel
®
AVR
®
enhanced RISC architecture. By executing powerful instructions in a single clock
cycle, the ATmega169A/169PA/329A/329PA/3290A/3290PA/649A/649P/6490A/6490P achieves throughputs approaching
1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
2.1
Block diagram
Block diagram.
Figure 2-1.
GND
VCC
PF0 - PF7
PA0 - PA7
PC0 - PC7
PORTF DRIVERS
PORTA DRIVERS
PORTC DRIVERS
DATA REGISTER
PORTF
DATA DIR.
REG. PORTF
DATA REGISTER
PORTA
DATA DIR.
REG. PORTA
DATA REGISTER
PORTC
DATA DIR.
REG. PORTC
8-BIT DATA BUS
AVCC
AGND
AREF
ADC
CALIB. OSC
INTERNAL
OSCILLATOR
OSCILLATOR
JTAG TAP
PROGRAM
COUNTER
STACK
POINTER
WATCHDOG
TIMER
DATA DIR.
REG. PORTH
TIMING AND
CONTROL
LCD
CONTROLLER/
DRIVER
PORTH DRIVERS
ON-CHIP DEBUG
PROGRAM
FLASH
SRAM
MCU CONTROL
REGISTER
PH0 - PH7
DATA REGISTER
PORTH
BOUNDARY-
SCAN
INSTRUCTION
REGISTER
GENERAL
PURPOSE
REGISTERS
X
Y
Z
TIMER/
COUNTERS
PROGRAMMING
LOGIC
INSTRUCTION
DECODER
INTERRUPT
UNIT
XTAL1
XTAL2
DATA DIR.
REG. PORTJ
CONTROL
LINES
ALU
EEPROM
PORTJ DRIVERS
AVR CPU
STATUS
REGISTER
PJ0 - PJ6
DATA REGISTER
PORTJ
USART
UNIVERSAL
SERIAL INTERFACE
SPI
ANALOG
COMPARATOR
DATA REGISTER
PORTE
DATA DIR.
REG. PORTE
DATA REGISTER
PORTB
DATA DIR.
REG. PORTB
DATA REGISTER
PORTD
DATA DIR.
REG. PORTD
DATA REG.
PORTG
DATA DIR.
REG. PORTG
+
-
PORTE DRIVERS
PORTB DRIVERS
PORTD DRIVERS
PORTG DRIVERS
PE0 - PE7
PB0 - PB7
PD0 - PD7
PG0 - PG4
The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are
directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one
single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers.
ATmega169A/PA/329A/PA/649A/P/3290A/PA/6490A/P [SUMMARY]
8284ES–AVR–02/2013
RESET
5