PD - 96266
IRF7799L2TRPbF
IRF7799L2TR1PbF
RoHS Compliant, Halogen Free
l
Lead-Free (Qualified up to 260°C Reflow)
l
Ideal for High Performance Isolated Converter
Primary Switch Socket
l
Optimized for Synchronous Rectification
l
Low Conduction Losses
l
High Cdv/dt Immunity
l
Low Profile (<0.7mm)
l
Dual Sided Cooling Compatible
l
Compatible with existing Surface Mount Techniques
l
Industrial Qualified
l
Typical values (unless otherwise specified)
DirectFET Power MOSFET
V
DSS
Q
g
tot
V
GS
Q
gd
39nC
R
DS(on)
32mΩ@ 10V
250V min ± 30V max
110nC
V
gs(th)
4.0V
S
S
S
S
S
S
D
G
S
S
D
Applicable DirectFET Outline and Substrate Outline
SB
SC
M2
M4
L8
DirectFET ISOMETRIC
L4
L6
L8
Description
The IRF7799L2TR/TR1PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET
TM
packaging to
achieve the lowest on-state resistance in a package that has a footprint smaller than a D
2
PAK and only 0.7 mm profile. The DirectFET package
is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection
soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package
allows dual sided cooling to maximize thermal transfer in power systems.
The IRF7799L2TR/TR1PbF is optimized for high frequency switching and synchronous rectification applications. The reduced total losses
in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system
reliability improvements, and makes this device ideal for high performance power converters.
Absolute Maximum Ratings
Parameter
V
DS
V
GS
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
D
@ T
A
= 25°C
I
D
@ T
C
= 25°C
I
DM
E
AS
I
AR
RDS(on), Drain-to -Source On Resistance (m
Ω)
Max.
250
±30
35
25
6.6
375
140
325
21
60
T J = 25°C
Units
V
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
f
Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
f
Continuous Drain Current, V
GS
@ 10V
(Silicon Limited)
e
Continuous Drain Current, V
GS
@ 10V
(Package Limited)
f
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
A
g
Ãg
h
55
Typical RDS(on) (mW)
mJ
A
200
180
160
ID = 21A
50
45
40
35
30
140
120
100
80
60
40
20
4
8
12
16
20
TJ = 125°C
T J = 25°C
Vgs = 7.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 15V
25
0
20
40
60
80
100
VGS, Gate -to -Source Voltage (V)
ID, Drain Current (A)
Fig 1.
Typical On-Resistance vs. Gate Voltage
Notes:
Fig 2.
Typical On-Resistance vs. Drain Current
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
T
C
measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting T
J
= 25°C, L = 1.42mH, R
G
= 25Ω, I
AS
= 21A.
Pulse width
≤
400µs; duty cycle
≤
2%.
1
08/31/09
IRF7799L2TR/TR1PbF
Static @ T
J
= 25°C (unless otherwise specified)
Parameter
BV
DSS
∆ΒV
DSS
/∆T
J
R
DS(on)
V
GS(th)
∆V
GS(th)
/∆T
J
I
DSS
I
GSS
gfs
Q
g
Q
gs1
Q
gs2
Q
gd
Q
godr
Q
sw
Q
oss
R
G
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Q
gs2
+ Q
gd
)
Output Charge
Gate Resistance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Min.
250
–––
–––
3.0
–––
–––
–––
–––
–––
54
–––
–––
–––
–––
–––
–––
–––
–––
Typ. Max. Units
–––
0.12
32
4.0
-13
–––
–––
–––
–––
–––
110
26
5.7
39
39
45
33
0.73
36.3
33.5
73.9
26.6
6714
606
157
5063
217
–––
–––
38
5.0
–––
20
1
100
-100
–––
165
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
pF
nC
Ω
Conditions
V
GS
= 0V, I
D
= 250µA
V
V/°C Reference to 25°C, I
D
= 2mA
mΩ V
GS
= 10V, I
D
= 21A
V
V
DS
= V
GS
, I
D
= 250µA
i
mV/°C
µA V
DS
= 250V, V
GS
= 0V
1mA V
DS
= 250V, V
GS
= 0V, T
J
= 125°C
nA
S
V
GS
= 20V
V
GS
= -20V
V
DS
= 50V, I
D
= 21A
V
DS
= 125V
V
GS
= 10V
I
D
= 21A
See Fig. 9
V
DS
= 16V, V
GS
= 0V
V
DD
= 125V, V
GS
= 10V
ns
I
D
= 21A
R
G
=6.2Ω
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 1.0V, f=1.0MHz
V
GS
= 0V, V
DS
= 80V, f=1.0MHz
nC
–––
–––
–––
–––
–––
–––
–––
–––
–––
Ãi
Diode Characteristics
Parameter
I
S
I
SM
V
SD
t
rr
Q
rr
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Min.
–––
–––
–––
–––
–––
Typ. Max. Units
–––
–––
–––
132
1412
35
A
140
1.3
198
2118
V
ns
nC
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
T
J
= 25°C, I
S
= 21A, V
GS
= 0V
T
J
= 25°C, I
F
= 21A, V
DD
= 50V
di/dt = 100A/µs
Ãg
i
i
2
www.irf.com
IRF7799L2TR/TR1PbF
Absolute Maximum Ratings
P
D
@T
C
= 25°C
P
D
@T
C
= 100°C
P
D
@T
A
= 25°C
T
P
T
J
T
STG
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
f
f
c
Parameter
Max.
125
63
4.3
270
-55 to + 175
Units
W
°C
Thermal Resistance
R
θJA
R
θJA
R
θJA
R
θJ-can
R
θJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Can
Junction-to-PCB Mounted
fl
e
j
k
Parameter
Typ.
–––
12.5
20
–––
–––
Max.
35
–––
–––
1.2
0.5
Units
°C/W
10
Thermal Response ( Z thJC )
1
D = 0.50
0.20
0.10
0.05
0.02
0.01
SINGLE PULSE
( THERMAL RESPONSE )
τ
J
τ
J
τ
1
0.1
R
1
R
1
τ
2
R
2
R
2
Ri (°C/W)
τ
C
0.38829
τ
0.8117
τi
(sec)
0.000787
0.006586
τ
1
0.01
τ
2
Ci=
τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.01
0.1
1
0.001
1E-006
1E-005
0.0001
0.001
t1 , Rectangular Pulse Duration (sec)
Fig 3.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
Notes:
Mounted on minimum footprint full size board with metalized
Surface mounted on 1 in. square Cu board, steady state.
T
C
measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink.
R
θ
is measured at
T
J
of approximately 90°C.
Used double sided cooling, mounting pad with large heatsink.
Surface mounted on 1 in. square Cu
board (still air).
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink. (still air)
www.irf.com
3
IRF7799L2TR/TR1PbF
1000
TOP
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
5.0V
1000
TOP
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
5.0V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
100
BOTTOM
5.0V
10
10
1
5.0V
Tj
≤
60µs PULSE WIDTH
= 25°C
0.1
0.1
1
10
100
V DS, Drain-to-Source Voltage (V)
1
Tj
≤
60µs PULSE WIDTH
= 175°C
0.1
0.1
1
10
100
V DS, Drain-to-Source Voltage (V)
Fig 4.
Typical Output Characteristics
1000
Fig 5.
Typical Output Characteristics
3.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
VDS = 50V
≤60µs
PULSE WIDTH
100
T J = 175°C
TJ = 25°C
TJ = -40°C
2.5
2.0
1.5
1.0
0.5
0.0
ID = 21A
VGS = 10V
10
1
0.1
3
4
5
6
7
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
Fig 6.
Typical Transfer Characteristics
100000
VGS, Gate-to-Source Voltage (V)
Fig 7.
Normalized On-Resistance vs. Temperature
14.0
ID= 21A
VDS= 200V
VDS= 125V
VDS= 50V
C oss = C ds + C gd
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
12.0
10.0
8.0
6.0
4.0
2.0
0.0
C, Capacitance (pF)
10000
Ciss
1000
Coss
Crss
100
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
0
20
40
60
80
100 120 140 160
QG, Total Gate Charge (nC)
Fig 8.
Typical Capacitance vs.Drain-to-Source Voltage
Fig 9.
Typical Total Gate Charge vs
Gate-to-Source Voltage
4
www.irf.com
IRF7799L2TR/TR1PbF
1000
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
TJ = 175°C
TJ = 25°C
TJ = -40°C
10
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
10
DC
1msec
100µsec
1
VGS = 0V
1
Tc = 25°C
Tj = 175°C
Single Pulse
10msec
0.1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
VSD, Source-to-Drain Voltage (V)
1
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 10.
Typical Source-Drain Diode Forward Voltage
40
VGS(th) , Gate Threshold Voltage (V)
Fig11.
Maximum Safe Operating Area
6.0
ID, Drain Current (A)
30
5.0
4.0
20
3.0
ID = 250µA
2.0
ID = 1.0mA
ID = 1.0A
10
0
25
50
75
100
125
150
175
T C , Case Temperature (°C)
1.0
-75 -50 -25
0
25 50 75 100 125 150 175
T J , Temperature ( °C )
Fig 12.
Maximum Drain Current vs. Case Temperature
1400
EAS , Single Pulse Avalanche Energy (mJ)
Fig 13.
Typical Threshold Voltage vs.
Junction Temperature
ID
TOP
1.33A
2.53A
BOTTOM 21A
1200
1000
800
600
400
200
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 14.
Maximum Avalanche Energy Vs. Drain Current
www.irf.com
5