PD - 90707D
RADIATION HARDENED
POWER MOSFET
THRU-HOLE (T0-254AA)
Product Summary
Part Number Radiation Level
IRHM7130
100K Rads (Si)
IRHM3130
300K Rads (Si)
IRHM4130
600K Rads (Si)
IRHM8130
1000K Rads (Si)
R
DS(on)
0.18Ω
0.18Ω
0.18Ω
0.18Ω
I
D
14A
14A
14A
14A
IRHM7130
100V, N-CHANNEL
RAD Hard HEXFET
TECHNOLOGY
®
TO-254AA
International Rectifiers RADHard HEXFET
®
technol-
ogy provides high performance power MOSFETs for
space applications. This technology has over a de-
cade of proven performance and reliability in satellite
applications. These devices have been character-
ized for both Total Dose and Single Event Effects (SEE).
The combination of low Rdson and low gate charge
reduces the power losses in switching applications
such as DC to DC converters and motor control. These
devices retain all of the well established advantages
of MOSFETs such as voltage control, fast switching,
ease of paralleling and temperature stability of elec-
trical parameters.
Features:
!
!
!
!
!
!
!
!
!
Single Event Effect (SEE) Hardened
Low R
DS(on)
Low Total Gate Charge
Proton Tolerant
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Ceramic Package
Light Weight
Absolute Maximum Ratings
Parameter
ID @ VGS = 12V, TC = 25°C
ID @ VGS = 12V, TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current
➀
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
➁
Avalanche Current
➀
Repetitive Avalanche Energy
➀
Peak Diode Recovery dv/dt
➂
Operating Junction
Storage Temperature Range
Lead Temperature
Weight
For footnotes refer to the last page
14
9.0
56
75
0.60
±20
160
14
7.5
5.5
-55 to 150
Pre-Irradiation
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
o
C
300 ( 0.063 in.(1.6mm) from case for 10s)
9.3(Typical )
g
www.irf.com
1
7/5/01
IRHM7130
Pre-Irradiation
@ Tj = 25°C (Unless Otherwise Specified)
Min
100
2.0
3.3
Electrical Characteristics
Parameter
Typ Max Units
0.12
6.8
0.18
0.20
4.0
25
250
100
-100
45
11
17
30
120
49
64
V
V/°C
Ω
V
S( )
µA
Ω
Test Conditions
VGS = 0V, ID = 1.0mA
Reference to 25°C, ID = 1.0mA
VGS = 12V, ID =9.0A
➃
VGS = 12V, ID = 14A
VDS = VGS, ID = 1.0mA
VDS > 15V, IDS = 9.0A
➃
VDS= 80V ,VGS=0V
VDS = 80V,
VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VGS =12V, ID =14A
VDS = 50V
VDD = 50V, ID =14A
VGS =12V, RG = 7.5Ω
BVDSS
Drain-to-Source Breakdown Voltage
∆BV
DSS /∆T J Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
g fs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
IGSS
IGSS
Qg
Q gs
Qgd
td
(on)
tr
td
(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (Miller) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
nA
nC
ns
nH
Measured from Drain lead (6mm /0.25in.
from package) to Source lead (6mm /25in.
from package) with Source wires internally
bonded from Source Pin to Drain Pad
Ciss
Coss
Crss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
1100
310
55
pF
VGS = 0V, VDS = 25V
f = 1.0MHz
Source-Drain Diode Ratings and Characteristics
Parameter
IS
ISM
VSD
t rr
Q RR
ton
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode)
➀
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min Typ Max Units
14
56
1.8
370
3.5
Test Conditions
A
V
nS
µC
T
j
= 25°C, IS = 14A, VGS = 0V
➃
Tj = 25°C, IF = 14A, di/dt
≤
100A/µs
VDD
≤
50V
➃
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance
Parameter
R thJC
RthJA
RthCS
Junction-to-Case
Junction-to-Ambient
Case-to-Sink
Min Typ Max Units
1.67
48
0.21
°C/W
Test Conditions
Typical socket mount
Note: Corresponding Spice and Saber models are available on the G&S Website.
For footnotes refer to the last page
2
www.irf.com
Radiation Characteristics
Pre-Irradiation
IRHM7130
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability.
The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation
➄➅
Parameter
100K Rads(Si)
Min
300 - 1000K Rads (Si)
Max
Min
Units
Units
Max
V
nA
µA
Ω
Ω
V
Test Conditions
BV
DSS
V
/5JD
I
GSS
I
GSS
I
DSS
R
DS(on)
R
DS(on)
V
SD
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source"
➃
On-State Resistance (TO-3)
Static Drain-to-Source"
➃
On-State Resistance (TO-254AA)
Diode Forward Voltage"
➃
100
2.0
4.0
100
-100
25
0.18
0.18
1.8
100
1.25
4.5
100
-100
25
0.24
0.24
1.8
V
GS
= 0V, I
D
= 1.0mA
V
GS
= V
DS
, I
D
= 1.0mA
V
GS
= 20V
V
GS
= -20 V
V
DS
=80V, V
GS
=0V
V
GS
= 12V, I
D
=9.0A
V
GS
= 12V, I
D
=9.0A
V
GS
= 0V, IS = 14A
1. Part numbers IRHM7130
2. Part number IRHM8130, IRHM3130 and IRHM4130
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area
Ion
Cu
Br
LET
MeV/(mg/cm ))
28
36.8
Energy
(MeV)
285
305
Range
(µm)
43
39
V
DS(V)
@
V
GS
=0V @
V
GS
=-5V@
V
GS
=-10V@
V
GS
=-15V@
V
GS
=-20V
100
100
100
90
100
70
80
50
60
120
100
80
VDS
60
40
20
0
0
-5
-10
VGS
-15
-20
-25
Cu
Br
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHM7130
Post-Irradiation
Pre-Irradiation
Fig 1. Typical Response of Gate Threshhold Fig 2. Typical Response of On-State Resistance
Vs. Total Dose Exposure
Voltage Vs. Total Dose Exposure
Fig 3. Typical Response of Transconductance
Vs. Total Dose Exposure
Fig 4. Typical Response of Drain to Source
Breakdown Vs. Total Dose Exposure
4
www.irf.com
Post-Irradiation
Pre-Irradiation
IRHM7130
Fig 5. Typical Zero Gate Voltage Drain
Current Vs. Total Dose Exposure
Fig 6. Typical On-State Resistance Vs.
Neutron Fluence Level
Fig 8a. Gate Stress of
V
GSS
Equals 12 Volts During
Radiation
Fig 7. Typical Transient Response
of Rad Hard HEXFET During 1x10
12
Rad (Si)/Sec Exposure
Fig 8b. V
DSS
Stress Equals
80% of B
VDSS
During Radiation
www.irf.com
5