D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu r xmu ai s
o
a
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
®
SPX431L
Precision Adjustable Shunt Regulator
FEATURES
■
Tight Voltage Tolerance 0.5% at 10mA
■
Wide Operating Current 1mA to 100mA
■
Extended Temperature Range:
0°C to 105°C
■
Low Temperature Coefficient 30 ppm/°C
■
Offered in TO-92, SOIC, SOT-89,
SOT-23-3
■
Improved Replacement in Performance for
TL431 and AS431
■
Low Cost Solution
APPLICATIONS
■
Battery Operating Equipment
■
Adjustable Supplies
■
Switching Power Supplies
■
Error Amplifiers
■
Single Supply Amplifier
■
Monitors / VCRs / TVs
■
Personal Computers
DESCRIPTION
The SPX431L is a 3-terminal adjustable shunt voltage regulator providing a highly accurate
bandgap reference. The SPX431L acts as an open-loop error amplifier with a 2.5V temperature
compensation reference. The SPX431L’s thermal stability, wide operating current (100mA) and
temperature range (0°C to 105°C) makes it suitable for a variety of applications that require a
low cost, high performance solution. SPX431L tolerance of 0.5% is proven to be sufficient to
overcome all of the other errors in the system to virtually eliminate the need for trimming in the
power supply manufacturer's assembly line and contribute a significant cost savings.
The output voltage may be adjusted to any value between V
REF
and 20V with two external
resistors. The SPX431L is available in TO-92, SOIC-8, SOT-89, and SOT-23-3 packages.
BLOCK DIAGRAM
Cathode (K)
Reference
(R)
+
-
2.5V
Anode (A)
Rev. 8/8/02
SPX431L Precision Adjustable Shunt Regulator
© Copyright 2002 Sipex Corporation
1
ABSOLUTE MAXIMUM RATINGS
Cathode-Anode Reverse Breakdown V
KA
....................................... 20V
Anode-Cathode Forward Current, (<10ms) I
AK
................................. 1A
Operating Cathode Current I
KA
.................................................. 100mA
Reference Input Current I
REF
........................................................ 10mA
Continuos Power Dissipation at 25°C P
D
TO-92 ..................................................................... 775mW
SOT-23 .................................................................. 200 mW
SOIC-8 .................................................................... 750mW
SOT-89 ................................................................. 1000mW
Junction Temperature T
J
........................................................... 150
°C
Storage Temperature T
STG
.............................................. -65 to 150
°C
Lead Temperature (Soldering 10 sec.) T
L
.................................. 300°C
NOTE:
Stresses greater than those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent damage to the device. This is a stress
rating only and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating condi-
tions for extended periods may affect reliability.
RECOMMENDED CONDITIONS
PARAMETER
Cathode Voltage
Cathode Current
SYMBOL
V
KA
I
K
RATING
V
REF
to 20
10
UNIT
V
mA
TYPICAL THERMAL RESISTANCES
PACKAGE
TO-92
SOT-23
SOIC-8
SOT-89
0
JA
0
JC
TYPICAL DERATING
6.3 mW/°C
1.7 mW/°C
5.7 mW/°C
9.1 mW/°C
160°C/W 80°C/W
575°C/W 150°C/W
175°C/W 45°C/W
110°C/W
8°C/W
Typical deratings of the thermal resistances are given for ambient
temperature >25°.
ELECTRICAL CHARACTERISTICS
Electrical characteristics at 25°C I
K
= 10mA V
K
= V
REF
, unless otherwise specified.
PARAMETER
SPX431LA
Reference Voltage
∆V
REF
withTemp.*
Ratio of Change in V
REF
to Cathode Voltage
Reference Input Current
I
REF
Temp Deviation
Min I
K
for Regulation
Off State Leakage
Dynamic Output
Impedance
SPX431L
Reference Voltage
∆V
REF
withTemp.*
Ratio of Change in V
REF
to Cathode Voltage
Reference Input Current
I
REF
Temp Deviation
Min I
K
for Regulation
Off State Leakage
Dynamic Output
Impedance
V
REF
TC
∆
V
REF
∆V
K
I
REF
∆I
REF
I
K(MIN)
I
K(OFF)
Z
KA
2
2
3
3
3
2
4
2
V
REF
= 0V, V
KA
= 20V
ƒ
z
≤
1kHz
I
K
= 1 to 100mA
T
J
= 0°C to 105°C
V
REF
to 10V
10V to 20V
-2.7
-2.0
2.470
2.495
0.07
-1.0
-0.4
0.7
0.4
0.4
0.04
0.15
2.520
0.20
0.3
4.0
1.2
1.0
1.0
0.5
µA
µA
mA
µA
Ω
V
mV/°C
mV/V
V
REF
TC
∆
V
REF
∆V
K
I
REF
∆I
REF
I
K(MIN)
I
K(OFF)
Z
KA
2
2
3
3
3
2
4
2
V
REF
= 0V, V
KA
= 20V
ƒ
z
≤
1kHz
I
K
= 1 to 100mA
T
J
= 0°C to 105°C
V
REF
to 10V
10V to 20V
-2.7
-2.0
2.490
2.503
0.07
-1.0
-0.4
0.7
0.4
0.4
0.04
0.15
2.515
0.20
0.3
4.0
1.2
1.0
1.0
0.5
µA
µA
mA
µA
Ω
V
mV/°C
mV/V
SYMBOL
FIGURE
CONDITIONS
MIN
TYP
MAX
UNITS
Rev. 8/8/02
SPX431L Precision Adjustable Shunt Regulator
© Copyright 2002 Sipex Corporation
2
PARAMETER
SPX431LC
Reference Voltage
∆V
REF
withTemp.*
Ratio of Change in V
REF
to Cathode Voltage
Reference Input Current
I
REF
Temp Deviation
Min I
K
for Regulation
Off State Leakage
SYMBOL
V
REF
TC
∆
V
REF
∆V
K
I
REF
∆I
REF
I
K(MIN)
I
K(OFF)
FIGURE
2
2
3
3
3
2
4
2
CONDITIONS
MIN
2.445
TYP
2.495
0.07
-1.0
-0.4
0.7
0.4
0.4
0.04
0.15
MAX
2.545
0.20
0.3
4.0
1.2
1.0
1.0
0.5
UNITS
V
mV/°C
mV/V
µA
µA
mA
µA
Ω
V
REF
to 10V
10V to 20V
T
J
= 0°C to 105°C
V
REF
= 0V, V
KA
= 16V
ƒ
z
≤
1kHz
I
K
= 1 to 100mA
-2.7
-2.0
Dynamic Output
Z
KA
Impedance
Operating Range (T
J
) = 0
°
C to 105
°
C.
* See appropiate test circuit (Figure 2)
CALCULATING AVERAGE TEMPERATURE COEFFICIENT (TC)
ppm
0
%
0
mV
0
∆
V
REF
•
TC in mV/°C =
∆
T
∆
V
REF
(mV)
∆
T
A
-10
5000
0.5
•
TC in %/°C =
(
(
∆
V
REF
∆
V
REF
at 25°C
∆
T
A
∆
V
REF
∆
V
REF
at 25°C
∆
T
A
)
)
x 100
x 10
6
0
15
30
45
60
75
90
105
•
TC in ppm/°C =
Junction Temperature (°C)
0.07 mV/°C
0.003 %/°C
27 ppm/°C
Figure 1. V
REF
VS Temperature.
Rev. 8/8/02
SPX431L Precision Adjustable Shunt Regulator
© Copyright 2002 Sipex Corporation
3
TEST CIRCUITS
V
IN
V
KA =
V
REF
V
IN
V
KA
V
IN
V
KA
I
K (OFF)
I
REF
I
K
R1
I
REF
(V
REF
)
R2
I
K
Figure 2. Test Circuit for V
KA
= V
REF
Figure 3. Test Circuit for V
KA
> V
REF
Figure 4. Test Circuit for I
KOFF
TYPICAL PERFORMANCE CHARACTERISTICS
150
125
100
I
K
Cathode Current (mA)
V
KA
= V
REF
0°C to 105°C
2.53
2.52
V
REF
Reference Voltage (V)
V
KA
= V
REF
I
K
= 10mA
75
50
25
0
-25
-50
-75
-100
-2
-1
0
1
2
V
KA
Cathode Voltage (V)
3
2.51
2.50
2.49
2.48
2.47
2.46
2.45
-60
-30
0
30
60
90
T
A
Ambient Temperature (°C)
120
Figure 5. High Current Operating Characteristics
Figure 6. Reference Voltage VS Ambient Tempetature
800
700
I
K
Cathode Current (µA)
600
500
400
300
200
100
0
-100
-200
-1.0
I
REF
Reference Input Current (µA)
900
V
KA
= V
REF
0° to 105°C
3.0
2.5
2.0
1.5
1.0
0.5
0
-60
R1 = 10kΩ
R2 =
∞
I
K
= 10mA
105°C
25°C
-0°C
1.0
2.0
V
KA
Cathode Voltage (V)
0
3.0
-30
0
30
60
90
120
T
A
Ambient Temperature (°C)
Figure 7. Low Current Operating Characteristics.
Rev. 8/8/02
Figure 8. Reference Input Current VS Ambient
Temperature.
© Copyright 2002 Sipex Corporation
SPX431L Precision Adjustable Shunt Regulator
4