D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
MICROCIRCUIT DATA SHEET
MNCLC420A-X-RH REV 2A0
Original Creation Date: 05/16/00
Last Update Date: 08/02/01
Last Major Revision Date: 07/18/01
HIGH SPEED, VOLTAGE FEEDBACK OPERATIONAL AMPLIFIER:
ALSO AVAILABLE GUARANTEED TO 300K RAD(Si) TESTED TO
MIL-STD-883, METHOD 1019.5
General Description
The CLC420A is an operational amplifier designed for applications requiring matched inputs
and integration or transimpedance amplification. Utilizing voltage feedback architecture,
the CLC420A offers a 300MHz bandwidth, a 1100V/us slew rate and a 4mA supply current
(power consumption of 40mW, +5V supplies).
Applications such as differential amplifiers will benefit from 70dB common mode rejection
ratio and an input offset current of 0.2uA(typ). With its unity-gain stability,
2pA/SqRtHz current noise(typ), combined with a settling time of 18ns to 0.01% make the
CLC420A ideal for D/A converters, pin diode receivers and photo multiplier amplifiers.
All applications will find 70dB power supply rejection ratio attractive.
Industry Part Number
CLC420A
NS Part Numbers
CLC420AE-QML
CLC420AJ-QML
CLC420AJFQML
CLC420AWG-QML
CLC420AWGFQML
Prime Die
UB1366A
Controlling Document
SEE FEATURES SECTION
Processing
MIL-STD-883, Method 5004
Subgrp Description
1
2
3
4
5
6
7
8A
8B
9
10
11
Static tests at
Static tests at
Static tests at
Dynamic tests at
Dynamic tests at
Dynamic tests at
Functional tests at
Functional tests at
Functional tests at
Switching tests at
Switching tests at
Switching tests at
Temp (
o
C)
+25
+125
-55
+25
+125
-55
+25
+125
-55
+25
+125
-55
Quality Conformance Inspection
MIL-STD-883, Method 5005
1
MNCLC420A-X-RH REV 2A0
MICROCIRCUIT DATA SHEET
Features
- 300MHz small signal bandwidth
- 1100V/us slew rate
- Unity-gain stability
- Low distortion, -60dBc at 20MHz
- 0.01% settling in 18ns
- 0.2uA input offset current
- 2pASqRtHz current noise
CONTROLLING DOCUMENTS:
CLC420AE-QML
5962-9175801M2A
CLC420AJ-QML
5962-9175801MPA
CLC420AJFQML
5962F9175801MPA
CLC420AWG-QML
5962-9175801MXA
CLC420AWGFQML
5962F9175801MXA
Applications
- Active filters/integrators
- Differential amplifiers
- Pin diode receivers
- Log amplifiers
- D/A converters
- Photo multiplier amplifiers
2
MNCLC420A-X-RH REV 2A0
MICROCIRCUIT DATA SHEET
(Absolute Maximum Ratings)
(Note 1)
Supply Voltage (V+)
+7 Vdc
Output Current (Iout)
70 mA
Common Mode Input Voltage (Vcm)
V+
Differential Input Voltage
10 V
Power Dissipation (Pd)
(Note 2)
112 mW
Thermal Resistance
(ThetaJA) Junction to Ambient
LCC
Ceramic DIP
Ceramic SOIC
(ThetaJC) Junction to Case
LCC
Ceramic DIP
Ceramic SOIC
Junction Temperature (Tj)
Storage Temperature Range
-65 C < Ta < +150 C
Lead Temperature
(Soldering, 10 seconds)
Package Weight
(Typical)
Ceramic SOIC
Ceramic DIP
LCC
ESD Tolerance
(Note 3)
ESD Rating
Note 1:
+300 C
(Still Air)
(500 LFPM)
(Still Air)
(500 LFPM)
(Still Air)
(500 LFPM)
100
68
125
72
205
125
C/W
C/W
C/W
C/W
C/W
C/W
25 C/W
23 C/W
24 C/W
+175 C
220 mg
1075 mg
470 mg
2000V
Note 2:
Note 3:
Absolute Maximum Ratings are limits beyond which damage to the device may occur.
Operating Ratings are conditions for which the device is functional, but do not
guarantee specific performance limits. For guaranteed specifications and test
conditions see the Electrical Characteristics. The guaranteed specifications apply
only for the test conditions listed. Some performance characteristics may degrade
when the device is not operated under the listed test conditions.
The maximum power dissipation must be derated at elevated temperatures and is
dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to
ambient thermal resistance), and TA (ambient temperature). The maximum allowable
power dissipation at any temperature is Pdmax = (Tjmax - TA)/ThetaJA or the number
given in the Absolute Maximum Ratings, whichever is lower.
Human body model, 100pF discharged through 1.5K Ohms.
3
MNCLC420A-X-RH REV 2A0
MICROCIRCUIT DATA SHEET
Recommended Operating Conditions
Supply Voltage (V+)
+5 Vdc
Gain Range (Av)
+1 to +10
Operating Temperature Range
-55 C < Ta < +125 C
4