VRE303
Low Cost
Precision Reference
THALER CORPORATION • 2015 N. FORBES BOULEVARD • TUCSON, AZ. 85745 • (520) 882-4000
FEATURES
•
3.000 V OUTPUT ± 0.300 mV (.01%)
PIN CONFIGURATION
•
TEMPERATURE DRIFT: 0.6 ppm/°C
•
LOW NOISE: 1.5
µ
V
p-p
(0.1-10Hz)
•
INDUSTRY STD PINOUT- 8 PIN DIP OR
SURFACE MOUNT PACKAGE
•EXCELLENT
LINE REGULATION: 6ppm/V Typ.
•
OUTPUT TRIM CAPABILITY
FIGURE 1
N/C
+V
IN
TEMP
GND
1
2
3
4
8
NOISE
REDUCTION
REF. GND
V
OUT
TRIM
VRE303
TOP
VIEW
7
6
5
DESCRIPTION
The VRE303 is a low cost, high precision 3.0V
reference. Packaged in the industry standard 8
pin DIP, the device is ideal for upgrading systems
that use lower performance references.
The device provides ultrastable +3.000V output
with ±0.3000 mV (.01%) initial accuracy and a
temperature coefficient of 0.6 ppm/°C.
This
improvement in accuracy is made possible by a
unique, patented multipoint laser compensation
technique developed by Thaler Corporation.
Significant improvements have been made in
other performance parameters as well, including
initial accuracy, warm-up drift, line regulation, and
long-term stability, making the VRE303 series the
most accurate reference available in the standard
8 pin DIP package.
For enhanced performance, the VRE303 has an
external trim option for users who want less than
0.01% initial error.
For ultra low noise
applications, an external capacitor can be
attached between the noise reduction pin and the
ground pin. A reference ground pin is provided to
eliminate socket contact resistance errors.
The VRE303 is recommended for use as a
reference for 14, 16, or 18 bit D/A converters
which require an external precision reference.
The device is also ideal for calibrating scale factor
on high resolution A/D converters. The VRE303
offers superior performance over monolithic
references.
SELECTION GUIDE
Initial
Error
mV
0.30
0.48
0.60
0.30
0.48
0.60
Model
VRE303A
VRE303B
VRE303C
VRE303J
VRE303K
VRE303L
Temp.
Coeff.
ppm/°C
0.6
1.0
2.0
0.6
1.0
2.0
Temp.
Range
°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
For package option add D for DIP or S for Surface Mount
to end of model number.
VRE303DS REV. B MAY 2001
ELECTRICAL SPECIFICATIONS
Vps =+15V, T = 25°C, RL = 10KΩ unless otherwise noted.
VRE303
B/K
MAX
MIN
TYP
MAX
MIN
MODEL
PARAMETER
ABSOLUTE RATINGS
Power Supply
Operating Temp. (
A,B,C
)
Operating Temp. (
J,K,L
)
Storage Temperature
Short Circuit Protection
OUTPUT VOLTAGE
VRE303
(1)
Temp. Sensor Voltage
OUTPUT VOLTAGE ERRORS
Initial Error
Warmup Drift
T
min
- T
max (3)
Long-Term Stability
Noise (.1-10Hz)
(4)
OUTPUT CURRENT
Range
REGULATION
Line
Load
OUTPUT ADJUSTMENT
Range
(5)
(2)
A/J
MIN
TYP
C/L
TYP
MAX
UNITS
+14
0
-40
-65
+16
+70
+85
+150
Continuous
+15
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
V
°C
°C
°C
*
*
3.000
630
*
*
*
*
V
mV
0.30
1
0.6
6
2.0
*
*
2
0.48
3
1.0
*
*
0.60
2.0
mV
ppm
ppm/°C
ppm/1000hrs
µVpp
±10
*
*
mA
6
3
10
*
*
*
*
*
*
ppm/V
ppm/mA
10
*
*
mV
POWER SUPPLY CURRENTS
VRE303 +PS
NOTES:
*Same as A/J Models.
5
7
*
*
*
*
mA
1. The temp. reference TC is 2.1mV/ °C
2. The specified values are without external trim.
3. The temperature coefficient is determined by the box
method using the following formula:
V
max
- V
min
T.C. =
V
nominal
x (T
max
-T
min
)
x 10
6
4. The specified values are without the external
noise reduction capacitor.
5. The specified values are unloaded.
VRE303DS REV. B MAY 2001
TYPICAL PERFORMANCE CURVES
V
OUT
vs. TEMPERATURE
V
OUT
vs. TEMPERATURE
V
OUT
vs. TEMPERATURE
Temperature
o
C
VRE303A
Temperature
o
C
VRE303B
Temperature
o
C
VRE303C
V
OUT
vs. TEMPERATURE
V
OUT
vs. TEMPERATURE
V
OUT
vs. TEMPERATURE
Temperature
o
C
VRE303J
Temperature
o
C
VRE303K
Temperature
o
C
VRE303L
QUIESCENT CURRENT VS. TEMP
JUNCTION TEMP. RISE VS. OUTPUT CURRENT
PSRR VS. FREQUENCY
Temperature
o
C
Output Current (mA)
Frequency (Hz)
VRE303DS REV. B MAY 2001
DISCUSSION OF PERFORMANCE
THEORY OF OPERATION
The following discussion refers to the schematic in
figure 2 below. A FET current source is used to bias a
6.3V zener diode. The zener voltage is divided by the
resistor network R1 and R2. This voltage is then applied
to the noninverting input of the operational amplifier which
amplifies the voltage to produce a 3.000V output. The
gain is determined by the resistor networks R3 and R4:
G=1 + R4/R3. The 6.3V zener diode is used because it is
the most stable diode over time and temperature.
The current source provides a closely regulated zener
current, which determines the slope of the references’
voltage vs. temperature function. By trimming the zener
current a lower drift over temperature can be achieved.
But since the voltage vs. temperature function is nonlinear
this compensation technique is not well suited for wide
temperature ranges.
Thaler Corporation has developed a nonlinear
compensation network of thermistors and resistors that is
used in the VRE series voltage references. This
proprietary network eliminates most of the nonlinearity in
the voltage vs. temperature function. By adjusting the
slope, Thaler Corporation produces a very stable voltage
over wide temperature ranges.
This network is less than 2% of the overall network
resistance so it has a negligible effect on long term
stability.
Figure 3 shows the proper connection of the VRE303
series voltage references with the optional trim resistor for
initial error and the optional capacitor for noise reduction.
The VRE303 reference has the ground terminal brought
out on two pins (pin 4 and pin 7) which are connected
together internally. This allows the user to achieve greater
accuracy when using a socket. Voltage references have a
voltage drop across their power supply ground pin due to
quiescent current flowing through the contact resistance.
If the contact resistance was constant with time and
temperature, this voltage drop could be trimmed out.
When the reference is plugged into a socket, this source
of error can be as high as 20ppm. By connecting pin 4 to
the power supply ground and pin 7 to a high impedance
ground point in the measurement circuit, the error due to
the contact resistance can be eliminated. If the unit is
soldered into place, the contact resistance is sufficiently
small that it does not effect performance. Pay careful
attention to the circuit layout to avoid noise pickup and
voltage drops in the lines.
VRE303
FIGURE 2
EXTERNAL CONNECTIONS
+ V
IN
2
8
V
TEMP OUT
3
6
+ V
OUT
10k
Ω
OPTIONAL
FINE TRIM
ADJUSTMENT
OPTIONAL
NOISE REDUCTION
CAPACITOR
VRE303
C
N
1µF
7
4
5
FIGURE 3
REF. GND
VRE303DS REV. B MAY 2001
FIGURE 3
MECHANICAL
D
D1
D2
INCHES
DIM
A
B
B1
MIN
.115
.098
.046
.107
.009
.052
.397
.372
MAX
.125
.102
.051
.113
.012
.058
.403
.380
MILLIMETER
MIN
2.92
2.48
1.14
2.71
0.22
1.32
10.0
9.44
MAX
3.17
2.59
1.29
2.89
0.30
1.47
10.2
9.65
DIM
D2
E
E1
E2
P
Q
S
INCHES
MIN
.018
.507
.397
.264
.085
.020
.045
MAX
.023
.513
.403
.270
.095
.030
.055
MILLIMETER
MIN
0.46
12.8
10.0
6.70
2.15
.508
1.14
MAX
0.58
13.0
10.2
6.85
2.41
.762
1.39
E2
E1
E
C
C1
C2
D
PIN 1 IDENTIFIER
D1
A
Q
BASE
SEATING
E1
P
C1
C2
C
B
B1
FIGURE 4
S
INCHES
DIM
A
B
B1
B2
C
D
D1
MIN
.115
.018
.046
.098
.009
.397
.372
MAX
.125
.022
.051
.102
.012
.403
.380
MILLIMETER
MIN
2.92
.457
1.14
2.48
0.22
10.0
9.44
MAX
3.17
.558
1.29
2.59
0.30
10.2
9.65
DIM
E
E1
G1
L
P
Q
S
INCHES
MIN
.397
.264
.290
.195
.085
.055
.045
MILLIMETER
MAX
10.2
6.85
7.87
5.46
2.41
1.65
1.39
MAX MIN
.403
.270
.310
.215
.095
.065
.055
10.0
6.70
7.36
4.95
2.15
1.39
1.14
VRE303DS REV. B MAY 2001