TLP124
TOSHIBA Photocoupler
GaAs Ired & Photo−Transistor
TLP124
Office Machine
Programmable Controllers
AC / DC−Input Module
Telecommunication
The TOSHIBA mini flat coupler TLP124 is a small outline coupler,
suitable for surface mount assembly.
TLP124 consists of a photo transistor optically coupled to a gallium
arsenide infrared emitting diode.
•
•
•
•
Collector−emitter voltage: 80 V min.
Current transfer ratio: 100% min.
Rank BV: 200% min.
Isolation voltage: 3750Vrms min.
UL recognized: UL1577, file No. E67349
TOSHIBA
11−4C1
Weight: 0.09g (typ.)
Unit in mm
Pin Configurations
(top view)
1
3
1 : Anode
3 : Cathode
4 : Emitter
6 : Collector
6
4
1
2007-10-01
TLP124
Current Transfer Ratio
Classification
Rank BV
Standard
Current Transfer Ratio (min.)
Ta = 25°C
Ta =
−25~75°C
I
F
= 0.5mA
I
F
= 1mA
I
F
= 1mA
V
CE
= 0.5V
V
CE
= 1.5V
V
CE
= 0.5V
200%
100%
100%
50%
100%
50%
Marking Of
Classification
BV
BV, Blank
(Note) Application type name for certification test, please use standard product type name, i. e.
TLP124 (BV): TLP124
Absolute Maximum Ratings
(Ta = 25°C)
Characteristic
Forward current
Forward current derating
Peak forward current
(100μs pulse, 100pps)
Reverse voltage
Junction temperature
Collector−emitter voltage
Emitter−collector voltage
Collector current
Detector
Peak collector current
(10ms pulse, 100pps)
Power dissipation
Power dissipation derating
(Ta
≥
25°C)
Junction temperature
Storage temperature range
Operating temperature range
Lead soldering temperature (10s)
Total package power dissipation
Total package power dissipation
derating (Ta
≥
25°C)
Isolation voltage
(AC, 1min., R.H.
≤
60%)
(Note 1)
LED
Symbol
I
F
ΔI
F
/ °C
I
FP
V
R
T
j
V
CEO
V
ECO
I
C
I
CP
P
C
ΔP
C
/ °C
T
j
T
stg
T
opr
T
sol
P
T
ΔP
T
/ °C
BV
S
Rating
50
−0.7
(Ta
≥
53°C)
1
5
125
80
7
50
100
150
−1.5
125
−55~125
−55~100
260
200
−2.0
3750
Unit
mA
mA / °C
A
V
°C
V
V
mA
mA
mW
mA / °C
°C
°C
°C
°C
mW
mW / °C
Vrms
Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the
significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even
if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum
ratings.
Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook
(“Handling Precautions”/“Derating Concept and Methods”) and individual reliability data (i.e. reliability test
report and estimated failure rate, etc).
(Note 1) Device considered a two terminal device: Pins1, 3 shorted together and pins 4, 6 shorted together.
2
2007-10-01
TLP124
Recommended Operating Conditions
Characteristic
Supply voltage
Forward current
Collector current
Operating temperature
Symbol
V
CC
I
F
I
C
T
opr
Min.
―
―
―
−25
Typ.
5
1.6
1
―
Max.
48
20
10
75
Unit
V
mA
mA
°C
Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the
device. Additionally, each item is an independent guideline respectively. In developing designs using this
product, please confirm specified characteristics shown in this document.
Individual Electrical Characteristics
(Ta = 25°C)
Characteristic
Forward voltage
LED
Reverse Current
Capacitance
Collector−emitter
breakdown voltage
Detector
Emitter−collector
breakdown voltage
Collector dark current
Capacitance collector to emitter
Symbol
V
F
I
R
C
T
V
(BR) CEO
V
(BR) ECO
I
D
C
CE
Test Condition
I
F
= 10 mA
V
R
= 5 V
V = 0, f = 1 MHz
I
C
= 0.5 mA
I
E
= 0.1 mA
V
CE
= 48 V
V
CE
= 48 V, Ta = 85°C
V = 0, f = 1 MHz
Min.
1.0
―
―
80
7
―
―
―
Typ.
1.15
―
30
―
―
10
2
12
Max.
1.3
10
―
―
―
100
50
―
Unit
V
μA
pF
V
V
nA
μA
pF
Coupled Electrical Characteristics
(Ta = 25°C)
Characteristic
Current transfer ratio
Symbol
I
C
/ I
F
Test Condition
I
F
= 1mA, V
CE
= 0.5 V
Rank BV
I
F
= 0.5 mA, V
CE
= 1.5 V
Rank BV
I
C
= 0.5 mA, I
F
= 1 mA
Collector−emitter
saturation voltage
Off−state collector current
V
CE (sat)
I
C
= 1 mA, I
F
= 1 mA
Rank BV
V
F
= 0.7V, V
CE
= 48 V
MIn.
100
200
50
100
―
―
―
―
Typ.
―
―
―
―
―
0.2
―
―
Max.
1200
1200
―
―
0.4
―
0.4
10
μA
V
Unit
%
Low input CTR
I
C
/ I
F (low)
%
I
C(off)
Coupled Electrical Characteristics
(Ta =
−25~75°C)
Characteristic
Current transfer ratio
Symbol
I
C
/ I
F
Test Condition
I
F
= 1mA, V
CE
= 0.5 V
Rank BV
I
F
= 0.5 mA, V
CE
= 1.5 V
Rank BV
Min.
50
100
―
―
Typ.
―
―
50
100
Max.
―
―
―
―
Unit
%
%
%
%
Low input CTR
I
C
/ I
F (low)
3
2007-10-01
TLP124
Isolation Characteristics
(Ta = 25°C)
Characteristic
Capacitance
(input to output)
Isolation resistance
Symbol
C
S
R
S
Test Condition
V
S
= 0, f = 1 MHz
V
S
= 500 V, R.H.
≤
60%
AC, 1 minute
Isolation voltage
BV
S
AC, 1 s, in oil
DC, 1 minute, in oil
Min.
―
5×10
10
Typ.
0.8
10
14
Max.
―
―
―
―
―
Unit
pF
Ω
V
rms
V
dc
3750
―
―
—
10000
10000
Switching Characteristics
(Ta = 25°C)
Characteristic
Rise time
Fall time
Turn−on time
Turn−off time
Turn−on time
Storage time
Turn−off time
Symbol
t
r
t
f
t
ON
t
OFF
t
ON
t
s
t
OFF
R
L
= 4.7 kΩ
V
CC
= 5 V, I
F
= 1.6 mA
(Fig.1)
V
CC
= 10 V, I
C
= 2 mA
R
L
= 100Ω
Test Condition
Min.
―
―
―
―
―
―
―
Typ.
8
8
10
8
10
50
300
Max.
―
―
―
―
―
―
―
μs
μs
Unit
Fig. 1 Switching time test circuit
I
F
V
CC
R
L
V
CE
V
CE
I
F
t
s
V
CC
4.5V
0.5V
t
ON
t
OFF
4
2007-10-01
TLP124
I
F
– Ta
100
200
P
C
– Ta
Allowable forward current
I
F
(mA)
Allowable collector power
dissipation P
C
(mW)
80
160
60
120
40
80
20
40
0
−20
0
20
40
60
80
100
120
0
−20
0
20
40
60
80
100
120
Ambient temperature
Ta
(°C)
Ambient temperature
Ta
(°C)
I
FP
– D
R
I
FP (mA)
3000
100
Pulse width
≦
100μs
Ta = 25°C
50
Ta = 25°C
I
F
– V
F
500
(mA)
I
F
Forward current
10
−
3
3
10
−
2
3
10
−
1
3
10
0
1000
30
Pulse forward current
300
10
5
3
100
50
30
1
0.5
0.3
10
3
Duty cycle ratio
D
R
0.1
0.6
0.8
1.0
1.2
1.4
1.6
1.8
Forward voltage
V
F
(V)
ΔV
F
/
ΔTa
– I
F
Forward voltage temperature
coefficient
ΔV
F
/
ΔTa
(mV / °C)
−3.2
−2.8
−2.4
−2.0
−1.6
−1.2
−0.8
−0.4
0.1
1000
I
FP
– V
FP
(mA)
I
FP
Pulse forward current
500
300
100
50
30
10
5
3
1
0.6
Pulse width
≦
10μs
Repetitive
Frequency = 100Hz
Ta = 25°C
1.0
1.4
1.8
2.2
2.6
3.0
0.3 0.5
1
3
5
10
30
50
Forward current
I
F
(mA)
Pulse forward voltage
V
FP
(V)
5
2007-10-01