Features
l
l
l
l
l
l
l
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
HEXFET Power MOSFET
D
IRFZ46ZPbF
IRFZ46ZSPbF
IRFZ46ZLPbF
®
V
DSS
= 55V
R
DS(on)
= 13.6mΩ
PD - 95562A
G
S
Description
This HEXFET
®
Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating. These features
combine to make this design an extremely efficient
and reliable device for use in a wide variety of
applications.
I
D
= 51A
TO-220AB
IRFZ46ZPbF
D
2
Pak
IRFZ46ZSPbF
Max.
51
36
200
82
0.54
± 20
63
97
TO-262
IRFZ46ZLPbF
Units
A
Absolute Maximum Ratings
Parameter
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
C
= 25°C
V
GS
E
AS
E
AS
(tested)
I
AR
E
AR
T
J
T
STG
Continuous Drain Current, V
GS
@ 10V (Silicon Limited)
Continuous Drain Current, V
GS
@ 10V (See Fig. 9)
Pulsed Drain Current
c
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy (Thermally Limited)
Single Pulse Avalanche Energy Tested Value
Avalanche Current
W
W/°C
V
mJ
A
mJ
°C
c
i
d
Repetitive Avalanche Energy
Operating Junction and
Storage Temperature Range
h
See Fig.12a,12b,15,16
-55 to + 175
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 screw
Thermal Resistance
Parameter
R
θJC
R
θCS
R
θJA
R
θJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Junction-to-Ambient (PCB Mount, steady state)
Typ.
–––
0.50
–––
–––
Max.
1.84
–––
62
40
Units
°C/W
HEXFET
®
is a registered trademark of International Rectifier.
j
www.irf.com
1
09/21/10
IRFZ46Z/S/LPbF
Parameter
V
(BR)DSS
∆ΒV
DSS
/∆T
J
R
DS(on)
V
GS(th)
gfs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
oss
eff.
Static @ T
J
= 25°C (unless otherwise specified)
Min. Typ. Max. Units
55
–––
–––
2.0
45
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
0.053 –––
10.9 13.6
–––
4.0
–––
–––
–––
20
–––
250
–––
200
––– -200
31
46
7.6
11
12
18
13
–––
63
–––
37
–––
39
–––
4.5
–––
7.5
1460
250
130
860
190
310
–––
–––
–––
–––
–––
–––
–––
pF
V
V/°C
mΩ
V
S
µA
nA
nC
Conditions
V
GS
= 0V, I
D
= 250µA
Reference to 25°C, I
D
= 1mA
V
GS
= 10V, I
D
= 31A
V
DS
= V
GS
, I
D
= 250µA
V
DS
= 25V, I
D
= 31A
V
DS
= 55V, V
GS
= 0V
V
DS
= 55V, V
GS
= 0V, T
J
= 125°C
V
GS
= 20V
V
GS
= -20V
I
D
= 31A
V
DS
= 44V
V
GS
= 10V
V
DD
= 28V
I
D
= 31A
R
G
= 15Ω
V
GS
= 10V
D
Between lead,
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
Internal Source Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
f
ns
f
f
nH
6mm (0.25in.)
from package
G
S
and center of die contact
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0MHz, See Fig. 5
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 44V, ƒ = 1.0MHz
V
GS
= 0V, V
DS
= 0V to 44V
Diode Characteristics
Parameter
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
–––
–––
–––
–––
–––
–––
–––
–––
21
16
51
A
200
1.3
31
24
V
ns
nC
Conditions
MOSFET symbol
showing the
integral reverse
G
D
Ã
p-n junction diode.
T
J
= 25°C, I
S
= 31A, V
GS
= 0V
T
J
= 25°C, I
F
= 31A, V
DD
= 28V
di/dt = 100A/µs
f
S
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
f
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Limited by T
Jmax
, starting T
J
= 25°C, L =0.13mH,
R
G
= 25Ω, I
AS
= 31A, V
GS
=10V. Part not
recommended for use above this value.
I
SD
≤
31A, di/dt
≤
1070A/µs, V
DD
≤
V
(BR)DSS
,
T
J
≤
175°C.
Pulse width
≤
1.0ms; duty cycle
≤
2%.
C
oss
eff. is a fixed capacitance that gives the same charging time
as C
oss
while V
DS
is rising from 0 to 80% V
DSS
.
Limited by T
Jmax
, see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
This is applied to D
2
Pak, when mounted on 1" square PCB
( FR-4 or G-10 Material ). For recommended footprint and
soldering techniques refer to application note #AN-994.
2
www.irf.com
IRFZ46Z/S/LPbF
1000
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
1000
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
100
BOTTOM
4.5V
10
10
4.5V
20µs PULSE WIDTH
Tj = 25°C
0.1
1
10
100
1
1
0.1
1
20µs PULSE WIDTH
Tj = 175°C
10
100
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
1000
Gfs, Forward Transconductance (S)
60
50
T J = 25°C
40
30
20
10
V DS = 10V
0
0
10
20
30
40
50
60
ID, Drain-to-Source Current
(Α)
100
T J = 175°C
T J = 175°C
10
T J = 25°C
1.0
4
5
6
VDS = 15V
20µs PULSE WIDTH
7
8
9
10
VGS, Gate-to-Source Voltage (V)
ID,Drain-to-Source Current (A)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Typical Forward Transconductance
vs. Drain Current
www.irf.com
3
IRFZ46Z/S/LPbF
10000
VGS = 0V,
f = 1 MHZ
Ciss = C gs + C gd, C ds SHORTED
Crss = C gd
Coss = C ds + C gd
12.0
ID= 31A
VGS, Gate-to-Source Voltage (V)
10.0
8.0
6.0
4.0
2.0
0.0
VDS= 44V
VDS= 28V
VDS= 11V
C, Capacitance(pF)
Ciss
1000
Coss
Crss
100
1
10
100
0
5
10
15
20
25
30
35
VDS, Drain-to-Source Voltage (V)
QG Total Gate Charge (nC)
Fig 5.
Typical Capacitance vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge vs.
Gate-to-Source Voltage
1000.00
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100.00
T J = 175°C
10.00
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
10
100µsec
1.00
T J = 25°C
1msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
10msec
0.10
VGS = 0V
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VSD, Source-to-Drain Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRFZ46Z/S/LPbF
55
50
45
ID, Drain Current (A)
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.5
ID = 31A
VGS = 10V
2.0
40
35
30
25
20
15
10
5
0
25
50
75
100
125
150
175
T C , Case Temperature (°C)
1.5
1.0
0.5
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 9.
Maximum Drain Current vs.
Case Temperature
Fig 10.
Normalized On-Resistance
vs. Temperature
10
Thermal Response ( Z thJC )
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
τ
J
R
1
R
1
τ
J
τ
1
τ
2
R
2
R
2
R
3
R
3
τ
3
τ
C
τ
τ
3
Ri (°C/W)
τi
(sec)
0.9322 0.000357
0.5533
0.3545
0.001133
0.004091
τ
1
τ
2
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Ci=
τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
0.001
1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5