D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
High Performance Video Op Amp
AD811
FEATURES
High speed
140 MHz bandwidth (3 dB, G = +1)
120 MHz bandwidth (3 dB, G = +2)
35 MHz bandwidth (0.1 dB, G = +2)
2500 V/µs slew rate
25 ns settling time to 0.1% (for a 2 V step)
65 ns settling time to 0.01% (for a 10 V step)
Excellent video performance (R
L
=150 Ω)
0.01% differential gain, 0.01° differential phase
Voltage noise of 1.9 nV/√Hz
Low distortion: THD = −74 dB @ 10 MHz
Excellent dc precision: 3 mV max input offset voltage
Flexible operation
Specified for ±5 V and ±15 V operation
±2.3 V output swing into a 75 Ω load (V
S
= ±5 V)
CONNECTION DIAGRAMS
NC
1
–IN
2
+IN
3
–V
S 4
8
NC
7
+V
S
6
OUTPUT
AD811
5
NC
NC = NO CONNECT
Figure 1. 8-Lead Plastic (N-8), CERDIP (Q-8), SOIC (R-8)
NC
1
NC
2
–IN
3
16
15
14
13
12
11
NC
NC
+V
S
NC
OUTPUT
NC
NC
NC
00866-E-002
NC
4
+IN
5
NC
6
–V
S 7
NC
8
AD811
10
9
APPLICATIONS
Video crosspoint switchers, multimedia broadcast systems
HDTV compatible systems
Video line drivers, distribution amplifiers
ADC/DAC buffers
DC restoration circuits
Medical
Ultrasound
PET
Gamma
Counter applications
NC = NO CONNECT
Figure 2. 16-Lead SOIC (R-16)
NC
NC
NC
NC
NC
3 2 1 20 19
NC
NC
–IN
NC
+IN
4
5
6
7
8
9 10 11 12 13
AD811
17
NC
NC
16
+V
S
15
NC
14
OUTPUT
18
00866-E-003
NC = NO CONNECT
GENERAL DESCRIPTION
A wideband current feedback operational amplifier, the AD811
is optimized for broadcast-quality video systems. The −3 dB
bandwidth of 120 MHz at a gain of +2 and the differential gain
and phase of 0.01% and 0.01° (R
L
= 150 Ω) make the AD811
an excellent choice for all video systems. The AD811 is designed
to meet a stringent 0.1 dB gain flatness specification to a band-
width of 35 MHz (G = +2) in addition to low differential gain
and phase errors. This performance is achieved whether driving
one or two back-terminated 75 Ω cables, with a low power
supply current of 16.5 mA. Furthermore, the AD811 is specified
over a power supply range of ±4.5 V to ±18 V.
(Continued on page 3)
Figure 3. 20-Terminal LCC (E-20A)
NC
1
NC
2
NC
3
–IN
4
NC
5
+IN
6
NC
7
–V
S 8
NC
9
NC
10
20
NC
19
NC
18
NC
17
+V
S
16
NC
15
OUTPUT
14
NC
13
NC
–V
S
NC
NC
NC
NC
11
NC
NC = NO CONNECT
Figure 4. 20-Lead SOIC (R-20)
Rev. E
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.326.8703
© 2004 Analog Devices, Inc. All rights reserved.
00866-E-004
AD811
12
NC
00866-E-001
AD811
TABLE OF CONTENTS
Specifications..................................................................................... 4
Absolute Maximum Ratings............................................................ 6
Maximum Power Dissipation ..................................................... 6
Metalization Photograph............................................................. 6
Typical Performance Characteristics ............................................. 7
Applications..................................................................................... 12
General Design Considerations................................................ 12
Achieving the Flattest Gain Response at High Frequency.... 12
Operation as a Video Line Driver ............................................ 14
An 80 MHz Voltage-Controlled Amplifier Circuit................ 15
A Video Keyer Circuit................................................................ 16
Outline Dimensions ....................................................................... 18
Ordering Guide .......................................................................... 20
REVISION HISTORY
7/04—Data Sheet Changed from Rev. D to Rev. E
Updated Format............................................................. Universal
Change to Maximum Power Dissipation Section .................... 7
Changes to Ordering Guide ...................................................... 20
Updated Outline Dimensions ................................................... 20
Rev. E | Page 2 of 20
AD811
GENERAL DESCRIPTION (continued)
The AD811 is also excellent for pulsed applications where tran-
sient response is critical. It can achieve a maximum slew rate of
greater than 2500 V/µs with a settling time of less than 25 ns to
0.1% on a 2 V step and 65 ns to 0.01% on a 10 V step.
The AD811 is ideal as an ADC or DAC buffer in data acquisi-
tion systems due to its low distortion up to 10 MHz and its wide
unity gain bandwidth. Because the AD811 is a current feedback
amplifier, this bandwidth can be maintained over a wide range
of gains. The AD811 also offers low voltage and current noise of
1.9 nV/√Hz and 20 pA/√Hz, respectively, and excellent dc accu-
racy for wide dynamic range applications.
0.10
0.09
0.08
0.20
R
F
= 649Ω
0.18
F
C
= 3.58MHz
100 IRE
MODULATED RAMP 0.16
R
L
= 150Ω
0.14
0.12
0.10
PHASE
0.08
0.06
0.04
GAIN
0.01
0
5
6
7
8
9
10
11
12
13
14
15
SUPPLY VOLTAGE (±V)
0.02
00866-E-005
12
G = +2
R
L
= 150Ω
R
G
= R
FB
V
S
= ±15V
9
6
GAIN (dB)
3
V
S
= ±5V
0
–3
1
10
FREQUENCY (MHz)
100
DIFFERENTIAL PHASE (DEGREES)
Figure 6. Frequency Response
DIFFERENTIAL GAIN (%)
0.07
0.06
0.05
0.04
0.03
0.02
0
Figure 5. Differential Gain and Phase
Rev. E | Page 3 of 20
00866-E-006
–6
AD811
SPECIFICATIONS
@ T
A
= +25°C, V
S
= ±15 V dc, R
LOAD
= 150 Ω, unless otherwise noted.
Table 1.
Parameter
DYNAMIC PERFORMANCE
Small Signal Bandwidth (No Peaking)
−3 dB
G = +1
G = +2
G = +2
G = +10
0.1 dB Flat
G = +2
Full Power Bandwidth
3
Slew Rate
Settling Time to 0.1%
Settling Time to 0.01%
Settling Time to 0.1%
Rise Time, Fall Time
Differential Gain
Differential Phase
THD @ f
C
= 10 MHz
Third-Order Intercept
4
INPUT OFFSET VOLTAGE
T
MIN
to T
MAX
Offset Voltage Drift
INPUT BIAS CURRENT
−Input
T
MIN
to T
MAX
+Input
TRANSRESISTANCE
T
MIN
to T
MAX
T
MIN
to T
MAX
V
OUT
= ±10 V
R
L
= ∞
R
L
= 200 Ω
V
OUT
= ±2.5 V
R
L
= 150 Ω
±5 V, ±1 5 V
2
5
±5 V, ±15 V
2
5
15
10
20
Conditions
V
S
AD811J/A
1
Min Typ
Max
AD811S
2
Min
Typ
Max
Unit
R
FB
= 562 Ω
R
FB
= 649 Ω
R
FB
= 562 Ω
R
FB
= 511 Ω
R
FB
= 562 Ω
R
FB
= 649 Ω
V
OUT
= 20 V p-p
V
OUT
= 4 V p-p
V
OUT
= 20 V p-p
10 V Step, A
V
= − 1
10 V Step, A
V
= − 1
2 V Step, A
V
= − 1
R
FB
= 649, A
V
= +2
f = 3.58 MHz
f = 3.58 MHz
V
OUT
= 2 V p-p, A
V
= +2
@ f
C
= 10 MHz
±15 V
±15 V
±15 V
±15 V
±15
±15
±15
±15
±15
±15
±15
±15
±15
±15
±15
±15
±15
±15
±5 V, ±15 V
140
120
80
100
25
35
40
400
2500
50
65
25
3.5
0.01
0.01
−74
36
43
0.5
140
120
80
100
25
35
40
400
2500
50
65
25
3.5
0.01
0.01
−74
36
43
0.5
5
2
2
5
30
10
25
MHz
MHz
MHz
MHz
MHz
MHz
MHz
V/µs
V/µs
ns
ns
ns
ns
%
Degree
dBc
dBm
dBm
mV
mV
µV/°C
µA
µA
µA
µA
3
5
3
5
±15 V
±15 V
±5 V
0.75
0.5
0.25
1.5
0.75
0.4
0.75
0.5
0.125
1.5
0.75
0.4
MΩ
MΩ
MΩ
1
2
The AD811JR is specified with ±5 V power supplies only, with operation up to ±12 V.
See the Analog Devices military data sheet for 883B tested specifications.
3
FPBW = slew rate/(2 π V
PEAK
).
4
Output power level, tested at a closed-loop gain of two.
Rev. E | Page 4 of 20