WILLAS
General Purpose Transistor
•
RoHS product for packing code suffix "G",
•
Weight : 0.008g
Device
MMBT3904LT1
Halogen free product for packing code suffix "H" .
MMBT3904LT1
ORDERING INFORMATION
Marking
1AM
Shipping
3000/Tape & Reel
MAXIMUM RATINGS
Rating
Collector–Emitter Voltage
Collector–Base Voltage
Emitter–Base Voltage
Collector Current — Continuous
Symbol
V
V
V
CEO
CBO
EBO
Value
40
60
6.0
200
Unit
Vdc
Vdc
Vdc
mAdc
1
SOT–23
3
COLLECTOR
I
C
BASE
THERMAL CHARACTERISTICS
Characteristic
Total Device Dissipation FR– 5 Board, (1)
T
A
= 25°C
Derate above 25°C
Thermal Resistance, Junction to Ambient
Total Device Dissipation
Alumina Substrate, (2) T
A
= 25°C
Derate above 25°C
Thermal Resistance, Junction to Ambient
Operating
Junction and Storage Temperature
Symbol
P
D
Max
225
1.8
556
300
2.4
R
θJA
T
J
, T
stg
417
–55 to +150
Unit
mW
mW/°C
°C/W
mW
mW/°C
°C/W
°C
2
EMITTER
R
θJA
P
D
DEVICE MARKING
MMBT3904LT1
= 1AM
ELECTRICAL CHARACTERISTICS
(T
A
= 25°C unless otherwise noted.)
Characteristic
Symbol
Min
Max
Unit
OFF CHARACTERISTICS
Collector–Emitter Breakdown Voltage(3)
(I
C
= 1.0 mAdc)
Collector–Base Breakdown Voltage
(I
C
= 10
µAdc)
Emitter–Base Breakdown Voltage
(I
E
= 10
µAdc)
Base Cutoff Current
( V
CE
= 30 Vdc, V
EB
= 3.0 Vdc, )
Collector Cutoff Current
( V
CE
= 30Vdc, V
BE
= 3.0Vdc )
1. FR–5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
3. Pulse Test: Pulse Width <300
µs,
Duty Cycle <2.0%.
I
BL
I
CEX
—
—
50
50
nAdc
nAdc
V
(BR)EBO
6.0
—
Vdc
V
(BR)CBO
60
—
Vdc
V
(BR)CEO
40
—
Vdc
WILLAS
MMBT3904LT1
ELECTRICAL CHARACTERISTICS
(T
A
= 25°C unless otherwise noted) (Continued)
Characteristic
Symbol
h
FE
40
70
100
60
30
V
CE(sat)
––
––
V
BE(sat)
0.65
––
0.85
0.95
0.2
0.3
Vdc
––
––
300
––
––
Vdc
Min
Max
Unit
––
ON CHARACTERISTICS (3)
DC Current Gain(1)
(I
C
=0.1 mAdc, V
CE
=1.0 Vdc)
(I
C
= 1.0 mAdc, V
CE
= 1.0 Vdc)
(I
C
= 10 mAdc, V
CE
= 1.0 Vdc)
(I
C
= 50mAdc, V
CE
= 1.0Vdc)
(I
C
= 100mAdc, V
CE
=1.0 Vdc)
Collector–Emitter Saturation Voltage
(I
C
= 10 mAdc, I
B
= 1.0 mAdc)(3)
(I
C
= 50 mAdc, I
B
= 5.0mAdc)
Base–Emitter Saturation Voltage(3)
(I
C
= 10 mAdc, I
B
= 1.0mAdc)
(I
C
= 50mAdc, I
B
= 5.0mAdc )
SMALL–SIGNAL CHARACTERISTICS
Current–Gain — Bandwidth Product
(I
C
= 10mAdc, V
CE
= 20Vdc, f = 100MHz)
Output Capacitance
(V
CB
= 5.0Vdc, I
E
= 0, f = 1.0 MHz)
Input Capacitance
(V
BE
= 0.5Vdc, I
C
= 0, f = 1.0 MHz)
Input Impedancen
(V
CE
= 10Vdc, I
C
= 1.0mAdc, f = 1.0 kHz)
Voltage Feedback Ratio
(V
CE
= 10 Vdc, I
C
= 1.0 mAdc, f = 1.0 kHz)
Small–Signal Current Gain
(V
CE
= 10 Vdc, I
C
= 1.0 mAdc, f = 1.0 kHz)
Output Admittance
(V
CE
= 10 Vdc, I
C
= 1.0 mAdc, f = 1.0 kHz)
Noise Figure
(V
CE
= 5.0 Vdc, I
C
= 100µAdc, R
S
= 1.0 k
Ω,
f = 1.0 kHz)
f
T
C
obo
C
ibo
h
ie
h
re
h
fe
h
oe
NF
300
––
––
1.0
0.5
100
1.0
—
––
4.0
8.0
10
8.0
400
40
5.0
MHz
pF
pF
kW
X10
–4
—
mmhos
dB
SWITCHING CHARACTERISTICS
Delay Time
Rise Time
Storage Time
Fall Time
(V
CC
= 3.0 Vdc,V
BE
= –0.5Vdc
I
C
= 10 mAdc, I
B1
= 1.0mAdc)
(V
CC
= 3.0Vdc,
I
C
= 10 mAdc,I
B1
= I
B2
= 1.0 mAdc)
t
d
t
r
t
s
t
f
—
—
—
—
35
35
200
50
ns
ns
3. Pulse Test: Pulse Width <300
µs,
Duty Cycle <2.0%.
WILLAS
MMBT3904LT1
+3 V
DUTY CYCLE = 2%
300 ns
+10.9 V
10 k
0
–0.5 V
< 1 ns
–9.1
* Total shunt capacitance of test jig and connectors
< 1 ns
C
S
< 4 pF*
1N916
C
S
< 4 pF*
275
DUTY CYCLE = 2%
10 < t
1
< 500
µs
+3 V
t
1
+10.9 V
275
10 k
Figure 1. Delay and Rise Time
Equivalent Test Circuit
Figure 2. Storage and Fall Time
Equivalent Test Circuit
TYPICAL TRANSIENT CHARACTERISTICS
T
J
= 25°C
T
J
= 125°C
10
7.0
5.0
5000
3000
2000
V
CC
= 40 V
I
C
/I
B
= 10
CAPACITANCE (pF)
Q, CHARGE (pC)
1000
700
500
C
ibo
3.0
2.0
Q
300
200
100
70
50
1.0
2.0 3.0
5.0 7.0 10
20
T
C
obo
Q
A
1.0
0.1
0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
20 30 40
30
50 70 100
200
REVERSE BIAS VOLTAGE (VOLTS)
I
C
, COLLECTOR CURRENT (mA)
Figure 3. Capacitance
Figure 4. Charge Data
WILLAS
MMBT3904LT1
500
300
200
100
70
50
500
I
C
/I
B
= 10
300
200
100
70
50
30
20
V
CC
= 40 V
I
C
/I
B
= 10
t
r
@ V
CC
= 3.0 V
30
20
40 V
15 V
10
7
5
1.0
2.0 3.0
5.0 7.0 10
t
r
, RISE TIME (ns)
TIME (ns)
t
d
@ V
OB
= 0 V
20
30
2.0 V
50 70 100
200
10
7
5
1.0
2.0 3.0
5.0 7.0 10
20
30
50 70 100
200
I
C
, COLLECTOR CURRENT (mA)
I
C
, COLLECTOR CURRENT (mA)
Figure 5. Turn–On Time
500
300
200
500
Figure 6. Rise Time
t ’
s
= t
s
–1 /8 t
f
I
C
/I
B
=20
I
C
/I
B
=10
I
B1
= I
B2
300
200
V
CC
= 40 V
I
B1
= I
B2
I
C
/I
B
= 20
t ’
s
, STORAGE TIME (ns)
50
30
20
I
C
/I
B
=20
I
C
/I
B
=10
t
f
, , FALL TIME (ns)
100
70
100
70
50
30
20
I
C
/I
B
= 10
10
7
5
1.0
2.0 3.0
5.0 7.0 10
20
30
50 70 100
200
10
7
5
1.0
2.0 3.0
5.0 7.0 10
20
30
50
70 100
200
I
C
, COLLECTOR CURRENT (mA)
I
C
, COLLECTOR CURRENT (mA)
Figure 7. Storage Time
Figure 8. Fall Time
TYPICAL AUDIO SMALL–SIGNAL CHARACTERISTICS
NOISE FIGURE VARIATIONS
(V
CE
= 5.0 Vdc, T
A
= 25°C, Bandwidth = 1.0 Hz)
12
14
SOURCE RESISTANCE=200Ω
10
f = 1.0 kHz
12
I
C
= 1.0 mA
I
C
= 1.0 mA
SOURCE RESISTANCE =200Ω
I
C
= 0.5 mA
NF, NOISE FIGURE (dB)
8
NF, NOISE FIGURE (dB)
10
8
6
4
2
0
0.1
0.2
I
C
= 0.5 mA
I
C
= 50
µA
I
C
= 100
µA
6
SOURCE RESISTANCE =1.0k
I
C
= 50µA
4
2
SOURCE RESISTANCE=500Ω
I
C
= 100
µA
0
0.1
0.2
0.4
1.0
2.0
4.0
10
20
40
100
0.4
1.0
2.0
4.0
10
20
40
100
f, FREQUENCY (kHz)
R
S
, SOURCE RESISTANCE (kΩ)
Figure 9.
Figure 10.
WILLAS
MMBT3904LT1
h PARAMETERS
(V
CE
= 10 Vdc, f = 1.0 kHz, T
A
= 25°C)
300
100
hoe , OUTPUT ADMITTANCE (
m
mhos)
0.1
0.2
0.3
0.5
1.0
2.0
3.0
5.0
10
50
200
20
h
fe
, CURRENT
100
70
50
10
5
2
1
0.1
0.2
0.3
0.5
1.0
2.0
3.0
5.0
10
30
I
C
, COLLECTOR CURRENT (mA)
I
C
, COLLECTOR CURRENT (mA)
Figure 11. Current Gain
h re , VOLTAGE FEEDBACK RATIO (X 10
−4
)
20
10
7.0
5.0
3.0
2.0
Figure 12. Output Admittance
h
ie
, INPUT IMPEDANCE (kΩ)
10
5.0
2.0
1.0
0.5
1.0
0.7
0.5
0.1
0.2
0.3
0.5
1.0
2.0
3.0
5.0
10
0.2
0.1
0.2
0.3
0.5
1.0
2.0
3.0
5.0
10
I
C
, COLLECTOR CURRENT (mA)
I
C
, COLLECTOR CURRENT (mA)
Figure 13. Input Impedance
Figure 14. Voltage Feedback Ratio
TYPICAL STATIC CHARACTERISTICS
h
FE
, DC CURRENT GAIN (NORMALIZED)
2.0
T
J
= +125°C
1.0
0.7
0.5
V
CE
= 1.0 V
+25°C
–55°C
0.3
0.2
0.1
0.1
0.2
0.3
0.5
0.7
1.0
2.0
3.0
5.0
7.0
10
20
30
50
70
100
200
I
C
, COLLECTOR CURRENT (mA)
Figure 15. DC Current Gain