DATA SHEET
BIPOLAR NALOG NTEGRATED IRCUIT
µ
PC2726T
1.6 GHz DIFFERENTIAL WIDE BAND AMPLIFIER
SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT
DESCRIPTION
The
µ
PC2726T is a silicon microwave monolithic integrated circuit designed for miniature differenctial amplifier.
This IC operates up to 1.6 GHz and therefore is suitable for BS tuner, mobile communication and measurement
equipment applications. This IC can also use as differential oscillator application.
The
µ
PC27×× series is manufactured using NEC’s 20 GHz f
T
NESAT
TM
III silicon bipolar process. This process
uses silicon nitride passivation film and gold metallization wirings.
external pollution and prevent corrosion and migration.
performance, uniformity and reliability.
These materials can protect the chips from
Thus, this process can produce the ICs with excellent
FEATURES
• Wide frequency respone
−
f
U
= 1.6 GHz @
−3
dB G
P
, V
CC
= 5 V
• Power gain
−
G
P
= 15 dB @ 5 V
• Low power consumption: 5 V, 15 mA TYP./2 V, 2.5 mA
• 6 pin mini mold for high-density surface mounting.
ORDERING INFORMATION
PART NUMBER
PACKAGE
6 pin mini mold
SUPPLYING FORM
Embossed tape 8 mm wide. 3 kp/reel.
Pin 1, 2, 3 face to perforation side of the tape.
µ
PC2726T-E3
*
For evaluation sample order, please contact your local NEC sales office. (Part number:
µ
PC2726T)
EQUIVALENT CIRCUIT
<5> V
CC
PIN CONNECTIONS
(Top View)
(Bottom View)
RF OUT <4>
RF IN <6>
<3> RF OUT
<1> RF IN
3
2
1
C1P
4
5
6
1. INPUT
2. GND
3. OUTPUT
4. OUTPUT
5. V
CC
6. INPUT
4
5
6
3
2
1
<2> GND
Caution: Electro-static sensitive device
Document No. P10873EJ2V0DS00 (2nd edition)
(Previous No. IC-3125)
Date Published March 1997 N
Printed in Japan
©
1994
P
PC2726T
ABSOLUTE MAXIMUM RATINGS
Supply Voltage
V
CC
Power Dissipation of Package Allowance P
D
6
280
V
mW
T
A
= +25 °C
Mounted on 50
u
50
u
1.6 mm
epoxy glass
PWB at T
A
= +85 °C
T
A
= +25 °C
Input Power
Operating Temperature
Storage Temperature
P
in
T
opt
T
stg
0
ð40
to +85
ð55
to +150
dBm
°C
°C
RECOMMENDED OPERATING CONDITIONS
PARAMETERS
Supply Voltage
Operating Temperature
SYMBOL
V
CC
T
A
MIN.
4.5
ð40
TYP.
5.0
+25
MAX.
5.5
+85
UNIT
V
°C
ELECTRICAL CHARACTERISTICS (T
A
= +25 °C, V
CC
= 5. V, Z
L
= Z
S
= 50
:
)
PARAMETERS
Circuit Current
Power Gain
Noise Figure
Upper Limit Operating Frequency
Isolation
Input Return Loss
Output Return Loss
Maximum Output Level
SYMBOL
I
CC
G
P
NF
f
U
ISL
RL
in
RL
out
P
O(sat)
ð5
1.0
MIN.
8.0
11.0
TYP.
11.5
15
4.5
1.6
60
2.0
4.0
ð2
MAX.
15.0
17.0
6.0
UNIT
mA
dB
dB
GHz
dB
dB
dB
dBm
TEST CONDITIONS
No input signal
f = 400 MHz
f = 400 MHz
3 dB down below flat gain at 0.4 GHz
f = 400 MHz
f = 400 MHz
f = 400 MHz
f = 400 MHz, P
in
=
ð10
dBm
STANDARD CHARACTERISTICS FOR REFERENCE (T
A
= +25 °C, Z
L
= Z
S
= 50
:
)
REFERENCE
VALUE
2.5
4.5
5.1
2.4
58
1.0
4.0
ð14
ð29
ð45
PARAMETERS
Circuit Current
Power Gain
Noise Figure
Upper Limit Operating Frequency
Isolation
Input Return Loss
Output Return Loss
Maximum Output Power
3rd Order Intermodulation Distortion
SYMBOL
I
CC
G
P
NF
f
u
ISL
RL
in
RL
out
P
O(sat)
IM
3
UNIT
mA
dB
dB
GHz
dB
dB
dB
dBm
dBc
TEST CONDITIONS
V
CC
= 2 V, No input signal
V
CC
= 2 V, f = 400 MHz
V
CC
= 2 V, f = 400 MHz
3 dB down below flat gain at 0.4 GHz
V
CC
= 2 V, f = 400 MHz
V
CC
= 2 V, f = 400 MHz
V
CC
= 2 V, f = 400 MHz
V
CC
= 2 V, f = 400 MHz, P
in
=
ð10
dBm
V
CC
= 2 V, P
O(each)
=
ð25
dBm, f
1
= 400 MHz,
f
2
= 402 MHz
V
CC
= 5 V, P
O(each)
=
ð25
dBm, f
1
= 400 MHz,
f
2
= 402 MHz
3rd Order Intermodulation Distortion
IM
3
dBc
2
P
PC2726T
TEST CIRCUITS
DC Parameters
V
CC
5.0 V
IN
IN
OUT
OUT
AC Parameters
V
CC
5.0 V
1 000 pF
C
IN
1 (1 000 pF)
IN
C
IN
2 (1 000 pF)
IN
C
OUT
1 (1 000 pF)
OUT
C
OUT
2 (1 000 pF)
OUT
3
P
PC2726T
TYPICAL CHARACTERISTICS
(Unless otherwise specified T
A
= +25 °C)
CIRCUIT CURRENT vs. SUPPLY VOLTAGE
20
18
No input signals
16
V
CC
= 5.0 V
14
CIRCUIT CURRENT vs. OPERATING
TEMPERATURE
I
CC
– Circuit Current – mA
I
CC
– Circuit Current – mA
2
3
4
V
CC
– Supply Voltage – V
6
16
14
12
10
8
6
4
2
0
1
5
12
10
8
6
4
2
0
–40
–20
0
20
40
60
80
100
T
opt
– Operating Temperature –
°C
NOISE FIGURE, POWER GAIN vs.
FREQUENCY
POWER GAIN vs. FREQUENCY
20
–40
°C
+25
°C
G
P
– Power Gain – dB
20
G
P
10
G
P
– Power Gain – dB
V
CC
= 5.5 V
5.0 V
4.5 V
3.0 V
2.0 V
10
V
CC
= +85
°C
NF – Noise Figure – dB
9
7
0
NF
5
3
1
0.1
V
CC
= 2.0 V
V
CC
= 4.5 V - 5.5 V
0
V
CC
= 5.0 V
0.3
1.0
2.0 3.0
–5
0.1
0.3
1.0
2.0
3.0
f – Frequency – GHz
f – Frequency – GHz
ISOLATION vs. FREQUENCY
0
RETURN LOSS vs. FREQUENCY
0
RL
in
RL
out
–10
RL
out
RL
in
V
CC
= 5.0 V
ISL – Isolation – dB
–20
RL
in
– Input Return Loss – dB
RL
out
– Output Return Loss – dB
0.3
1.0
2.0
3.0
–40
–20
–60
–30
–80
0.1
–40
0.1
0.3
1.0
2.0
f – Frequency – GHz
f – Frequency – GHz
4
P
PC2726T
OUTPUT POWER vs. INPUT POWER
10
f = 400 MHz
P
O
– Output Power – dBm
OUTPUT POWER vs. INPUT POWER
10
V
CC
= 5.0 V
f = 400 MHz
0
T
A
= +25
°C
P
O
– Output Power – dBm
0
V
CC
= 5.5 V
V
CC
= 5.0 V
V
CC
= 4.5 V
T
A
= +85
°C
–10
–10
T
A
= –40
°C
–20
V
CC
= 2.0 V
–30
–20
–30
–40
–50
–40
–30
–20
–10
0
–40
–50
–40
–30
–20
–10
0
P
in
– Input Power – dBm
P
in
– Input Power – dBm
OUTPUT POWER vs. INPUT POWER
10
f = 1 GHz
P
O
– Output Power – dBm
OUTPUT POWER vs. INPUT POWER
10
V
CC
= 5.0 V
P
O
– Output Power – dBm
0
V
CC
= 5.5 V
V
CC
= 5.0 V
0
–10
V
CC
= 4.5 V
–10
f = 400 MHz
–20
–20
V
CC
= 2.0 V
–30
–30
f = 1 GHz
–40
–50
–40
–30
–20
–10
0
–40
–50
–40
–30
–20
–10
0
P
in
– Input Power – dBm
SATURATED OUTPUT POWER vs.
FREQUENCY
0
P
O(sat)
– Saturated Output Power – dBm
P
in
– Input Power – dBm
3rd ORDER INTERMODULATION DISTORTION
vs. OUTPUT POWER OF EACH TONE
60
f
1
= 400 MHz
f
2
= 402 MHz
50
V
CC
= 5.5 V
V
CC
= 5.0 V
V
CC
= 4.5 V
–2
–4
–6
–8
–10
–12
V
CC
= 2.0 V
–14
–16
–18
–20
0.1
0.2
0.5
1
2
3
V
CC
= 5.5 V
V
CC
= 5.0 V
V
CC
= 4.5 V
IM
3
– 3rd Order Intermodulation Distortion – dBc
40
30
V
CC
= 2.0 V
20
10
–40
–30
–20
–10
0
f – Frequency – GHz
P
O(each)
– Output Power of Each Tone – dBm
5