CMOS, Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD) Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD)
CMOS, Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD) Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD)
EH2600TS-13.078125M Parametric
Parameter Name
Attribute value
Brand Name
Ecliptek
Is it lead-free?
Lead free
Is it Rohs certified?
conform to
Maker
ECLIPTEK
Parts packaging code
SMD 5.0mm x 7.0mm
Contacts
4
Manufacturer packaging code
SMD 5.0mm x 7.0mm
Reach Compliance Code
compliant
Other features
TRI-STATE; ENABLE/DISABLE FUNCTION; BULK
maximum descent time
6 ns
Frequency Adjustment - Mechanical
NO
frequency stability
100%
JESD-609 code
e4
Installation features
SURFACE MOUNT
Nominal operating frequency
13.078125 MHz
Maximum operating temperature
70 °C
Minimum operating temperature
Oscillator type
LVCMOS
Output load
30 pF
physical size
7.0mm x 5.0mm x 1.6mm
longest rise time
6 ns
Maximum supply voltage
3.6 V
Minimum supply voltage
3 V
Nominal supply voltage
3.3 V
surface mount
YES
maximum symmetry
60/40 %
Terminal surface
Nickel/Gold (Ni/Au)
EH2600TS-13.078125M Preview
EH2600TS-13.078125M
EH26 00
Series
RoHS Compliant (Pb-free) 3.3V 4 Pad 5mm x 7mm
Ceramic SMD LVCMOS High Frequency Oscillator
Frequency Tolerance/Stability
±100ppm Maximum
Operating Temperature Range
0°C to +70°C
RoHS
Pb
Nominal Frequency
13.078125MHz
TS -13.078125M
Pin 1 Connection
Tri-State (High Impedance)
Duty Cycle
50 ±10(%)
ELECTRICAL SPECIFICATIONS
Nominal Frequency
Frequency Tolerance/Stability
13.078125MHz
±100ppm Maximum (Inclusive of all conditions: Calibration Tolerance at 25°C, Frequency Stability over the
Operating Temperature Range, Supply Voltage Change, Output Load Change, First Year Aging at 25°C,
Shock, and Vibration)
±5ppm/year Maximum
0°C to +70°C
3.3Vdc ±0.3Vdc
35mA Maximum (No Load)
2.7Vdc Minimum (IOH= -8mA)
0.5Vdc Maximum (IOH= +8mA)
6nSec Maximum (Measured at 20% to 80% of waveform)
50 ±10(%) (Measured at 50% of waveform)
30pF Maximum
CMOS
Tri-State (High Impedance)
70% of Vdd Minimum to enable output, 20% of Vdd Maximum to disable output, No Connect to enable
output.
±250pSec Maximum, ±100pSec Typical
±50pSec Maximum, ±40pSec Typical
10mSec Maximum
-55°C to +125°C
Aging at 25°C
Operating Temperature Range
Supply Voltage
Input Current
Output Voltage Logic High (Voh)
Output Voltage Logic Low (Vol)
Rise/Fall Time
Duty Cycle
Load Drive Capability
Output Logic Type
Pin 1 Connection
Tri-State Input Voltage (Vih and Vil)
Absolute Clock Jitter
One Sigma Clock Period Jitter
Start Up Time
Storage Temperature Range
ENVIRONMENTAL & MECHANICAL SPECIFICATIONS
ESD Susceptibility
Fine Leak Test
Flammability
Gross Leak Test
Mechanical Shock
Moisture Resistance
Moisture Sensitivity
Resistance to Soldering Heat
Resistance to Solvents
Solderability
Temperature Cycling
Vibration
MIL-STD-883, Method 3015, Class 1, HBM: 1500V
MIL-STD-883, Method 1014, Condition A
UL94-V0
MIL-STD-883, Method 1014, Condition C
MIL-STD-883, Method 2002, Condition B
MIL-STD-883, Method 1004
J-STD-020, MSL 1
MIL-STD-202, Method 210, Condition K
MIL-STD-202, Method 215
MIL-STD-883, Method 2003
MIL-STD-883, Method 1010, Condition B
MIL-STD-883, Method 2007, Condition A
www.ecliptek.com | Specification Subject to Change Without Notice | Rev E 2/17/2010 | Page 1 of 5
EH2600TS-13.078125M
MECHANICAL DIMENSIONS (all dimensions in millimeters)
PIN
CONNECTION
Tri-State (High
Impedance)
Ground
Output
Supply Voltage
7.00
±0.15
3
5.00
±0.15
MARKING
ORIENTATION
2
1.4 ±0.1
5.08
±0.15
4
2.20
±0.15
1
1.4 ±0.2
3.68
±0.15
1
2
3
4
LINE MARKING
1
2
3
ECLIPTEK
13.078M
PXXYZZ
P=Configuration Designator
XX=Ecliptek Manufacturing
Code
Y=Last Digit of the Year
ZZ=Week of the Year
1.60 ±0.20
Suggested Solder Pad Layout
All Dimensions in Millimeters
2.0 (X4)
2.2 (X4)
2.88
Solder Land
(X4)
1.81
All Tolerances are ±0.1
www.ecliptek.com | Specification Subject to Change Without Notice | Rev E 2/17/2010 | Page 2 of 5
EH2600TS-13.078125M
OUTPUT WAVEFORM & TIMING DIAGRAM
TRI-STATE INPUT
V
IH
V
IL
CLOCK OUTPUT
V
OH
80% of Waveform
50% of Waveform
20% of Waveform
V
OL
OUTPUT DISABLE
(HIGH IMPEDANCE
STATE)
t
PLZ
Fall
Time
Rise
Time
T
W
T
Duty Cycle (%) = T
W
/T x 100
t
PZL
Test Circuit for CMOS Output
Oscilloscope
Frequency
Counter
+
+
Power
Supply
_
+
Voltage
Meter
_
Current
Meter
_
Supply
Voltage
(V
DD
)
Probe
(Note 2)
Output
0.01µF
(Note 1)
0.1µF
(Note 1)
Ground
C
L
(Note 3)
No Connect
or Tri-State
Note 1: An external 0.1µF low frequency tantalum bypass capacitor in parallel with a 0.01µF high frequency
ceramic bypass capacitor close to the package ground and V
DD
pin is required.
Note 2: A low capacitance (<12pF), 10X attenuation factor, high impedance (>10Mohms), and high bandwidth
(>300MHz) passive probe is recommended.
Note 3: Capacitance value C
L
includes sum of all probe and fixture capacitance.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev E 2/17/2010 | Page 3 of 5
EH2600TS-13.078125M
Recommended Solder Reflow Methods
T
P
Critical Zone
T
L
to T
P
Ramp-up
Ramp-down
Temperature (T)
T
L
T
S
Max
T
S
Min
t
S
Preheat
t 25°C to Peak
t
L
t
P
Time (t)
High Temperature Infrared/Convection
T
S
MAX to T
L
(Ramp-up Rate)
Preheat
- Temperature Minimum (T
S
MIN)
- Temperature Typical (T
S
TYP)
- Temperature Maximum (T
S
MAX)
- Time (t
S
MIN)
Ramp-up Rate (T
L
to T
P
)
Time Maintained Above:
- Temperature (T
L
)
- Time (t
L
)
Peak Temperature (T
P
)
Target Peak Temperature (T
P
Target)
Time within 5°C of actual peak (t
p
)
Ramp-down Rate
Time 25°C to Peak Temperature (t)
Moisture Sensitivity Level
Additional Notes
3°C/second Maximum
150°C
175°C
200°C
60 - 180 Seconds
3°C/second Maximum
217°C
60 - 150 Seconds
260°C Maximum for 10 Seconds Maximum
250°C +0/-5°C
20 - 40 seconds
6°C/second Maximum
8 minutes Maximum
Level 1
Temperatures shown are applied to body of device.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev E 2/17/2010 | Page 4 of 5
EH2600TS-13.078125M
Recommended Solder Reflow Methods
T
P
Critical Zone
T
L
to T
P
Ramp-up
Ramp-down
Temperature (T)
T
L
T
S
Max
T
S
Min
t
S
Preheat
t 25°C to Peak
t
L
t
P
Time (t)
Low Temperature Infrared/Convection 240°C
T
S
MAX to T
L
(Ramp-up Rate)
Preheat
- Temperature Minimum (T
S
MIN)
- Temperature Typical (T
S
TYP)
- Temperature Maximum (T
S
MAX)
- Time (t
S
MIN)
Ramp-up Rate (T
L
to T
P
)
Time Maintained Above:
- Temperature (T
L
)
- Time (t
L
)
Peak Temperature (T
P
)
Target Peak Temperature (T
P
Target)
Time within 5°C of actual peak (t
p
)
Ramp-down Rate
Time 25°C to Peak Temperature (t)
Moisture Sensitivity Level
Additional Notes
5°C/second Maximum
N/A
150°C
N/A
60 - 120 Seconds
5°C/second Maximum
150°C
200 Seconds Maximum
240°C Maximum
240°C Maximum 1 Time / 230°C Maximum 2 Times
10 seconds Maximum 2 Times / 80 seconds Maximum 1 Time
5°C/second Maximum
N/A
Level 1
Temperatures shown are applied to body of device.
Low Temperature Manual Soldering
185°C Maximum for 10 seconds Maximum, 2 times Maximum. (Temperatures shown are applied to body of device.)
High Temperature Manual Soldering
260°C Maximum for 5 seconds Maximum, 2 times Maximum. (Temperatures shown are applied to body of device.)
www.ecliptek.com | Specification Subject to Change Without Notice | Rev E 2/17/2010 | Page 5 of 5
CMOS, Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD) Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD)
CMOS, Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD) Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD)
One of the most common misconceptions we hear today, even among the world’s largest companies, is that they don’t really know why they need 5G. Some believe 5G is still too far away to plan for; other...
TI's C2000 Experimenter Kits are ideal for OEMs for initial device exploration and testing. The Piccolo Experimenter Kits include a docking station with onboard USB JTAG emulation, access to all contr...
1. Function IntroductionThis project uses the esp32-S3 development version Kovro-2 V3.1 to accept voice input and make intelligent judgments to execute the required commands. This project is an offlin...
Topic: Have you ever seen a 1GHz microcontroller? Introduction to Teensy 4.1 development boardIntroduction: In the domestic DIY circle, Microchip's AVR microcontrollers (Arduino) and ST's STM32 microc...
Realme previously applied for a new trademark "MagDart", and the industry speculated that this is a full-line wireless charger. Foreign media Gizmochina broke the news that this charger is simi...[Details]
Today's electronic products have higher and higher requirements for low power consumption. The problem of product power consumption is a problem that often gives product designers headaches but has...[Details]
The reporter learned from the Municipal Urban Group that the Huzhou Synear Food Peak-Shaving and Valley-Filling Energy Storage Project invested and constructed by Huzhou Qingtai New Energy Technology ...[Details]
Akamai Launches Akamai Connected Cloud and New Cloud Computing Services
The service takes a radically different approach to cloud computing, integrating core and distributed computin...[Details]
The project I'm working on recently needs to use the valid data in the split string, and the valid data is usually split between two identifiers. I haven't been able to find a suitable string f...[Details]
On June 23, the 55th Beidou navigation satellite developed by the Fifth Academy of the China Aerospace Science and Technology Corporation was successfully launched, which means that the final Beidou-...[Details]
The hottest industry at present is the Internet of Things, and the challenge facing the design of IoT products is how to maximize the power supply time of its ultra-small battery. These smart devices...[Details]
"342 plastic surgery hospitals, girls starting to put on makeup in fifth grade, and cosmetics retail stores are a major tourist feature in South Korea..." This was the first story the tour guide told...[Details]
;This program will show you cycle glitter between 8 led lamps
; maker:Chen Weiwu
; date:2012-11-08
; version:1.0.0
;-------------------------------------------------------------
;Defi...[Details]
Author: Atmosic CEO David Su According to a recent report from IDC, the number of connected devices in use worldwide will reach 41.6 billion by the end of 2025. The world of IoT continues to grow a...[Details]
;Knowledge point: Application of interruption; 1khz means inverting once every 500us
; t1 is mode 0, then m1m0=00h, use timer c/t=0 gate=0
; Mode 0 is a 13-bit timer...[Details]
Here we are going to talk about the configuration circuit of Xilinx's spartan-3 series FPGA. Of course, the configuration circuits of other series of FPGAs are similar, and readers can make inference...[Details]
In modern driving safety systems, the headlight control system plays an important role. According to records, most traffic accidents occur at night or in bad weather. Among these traffic accidents, m...[Details]
There is a great deal of concern about the effect of recessed connectors on network analyzer measurement accuracy, but without a quantitative determination method, it is difficult to predict or corre...[Details]
At about 3 p.m. on November 6, as Trump won the key swing state of Pennsylvania, he successfully won 270 electoral votes, defeating the Democratic candidate and current Vice President Harris a...[Details]