CMOS, Quartz Crystal Clock Oscillators XO (SPXO) HCMOS/TTL (CMOS) 5.0Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD) Quartz Crystal Clock Oscillators XO (SPXO) HCMOS/TTL (CMOS) 5.0Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD)
CMOS, Quartz Crystal Clock Oscillators XO (SPXO) HCMOS/TTL (CMOS) 5.0Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD) Quartz Crystal Clock Oscillators XO (SPXO) HCMOS/TTL (CMOS) 5.0Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD)
EH2545ETTS-18.432M TR Parametric
Parameter Name
Attribute value
Brand Name
Ecliptek
Is it lead-free?
Lead free
Is it Rohs certified?
conform to
Parts packaging code
SMD 5.0mm x 7.0mm
Contacts
4
Manufacturer packaging code
SMD 5.0mm x 7.0mm
Reach Compliance Code
163
Ageing
5 PPM/YEAR
technology
CMOS
EH2545ETTS-18.432M TR Preview
EH2545ETTS-18.432M
EH25 45 ET
Series
RoHS Compliant (Pb-free) 5.0V 4 Pad 5mm x 7mm
Ceramic SMD HCMOS/TTL High Frequency Oscillator
Frequency Tolerance/Stability
±50ppm Maximum
Operating Temperature Range
-40°C to +85°C
RoHS
Pb
Nominal Frequency
18.432MHz
TS -18.432M
Pin 1 Connection
Tri-State (High Impedance)
Duty Cycle
50 ±10(%)
ELECTRICAL SPECIFICATIONS
Nominal Frequency
Frequency Tolerance/Stability
18.432MHz
±50ppm Maximum (Inclusive of all conditions: Calibration Tolerance at 25°C, Frequency Stability over the
Operating Temperature Range, Supply Voltage Change, Output Load Change, First Year Aging at 25°C,
Shock, and Vibration)
±5ppm/year Maximum
-40°C to +85°C
5.0Vdc ±10%
50mA Maximum (No Load)
2.4Vdc Minimum with TTL Load, Vdd-0.4Vdc Minimum with HCMOS Load (IOH= -16mA)
0.4Vdc Maximum with TTL Load, 0.5Vdc Maximum with HCMOS Load (IOH= +16mA)
6nSec Maximum (Measured at 0.8Vdc to 2.0Vdc with TTL Load; Measured at 20% to 80% of waveform
with HCMOS Load)
50 ±10(%) (Measured at 1.4Vdc with TTL Load; Measured at 50% of waveform with HCMOS Load)
10TTL Load or 50pF HCMOS Load Maximum
CMOS
Tri-State (High Impedance)
+2.2Vdc Minimum to enable output, +0.8Vdc Maximum to disable output (High Impedance), No Connect to
enable output.
±250pSec Maximum, ±100pSec Typical
±50pSec Maximum, ±30pSec Typical
10mSec Maximum
-55°C to +125°C
Aging at 25°C
Operating Temperature Range
Supply Voltage
Input Current
Output Voltage Logic High (Voh)
Output Voltage Logic Low (Vol)
Rise/Fall Time
Duty Cycle
Load Drive Capability
Output Logic Type
Pin 1 Connection
Tri-State Input Voltage (Vih and Vil)
Absolute Clock Jitter
One Sigma Clock Period Jitter
Start Up Time
Storage Temperature Range
ENVIRONMENTAL & MECHANICAL SPECIFICATIONS
ESD Susceptibility
Fine Leak Test
Flammability
Gross Leak Test
Mechanical Shock
Moisture Resistance
Moisture Sensitivity
Resistance to Soldering Heat
Resistance to Solvents
Solderability
Temperature Cycling
Vibration
MIL-STD-883, Method 3015, Class 1, HBM: 1500V
MIL-STD-883, Method 1014, Condition A
UL94-V0
MIL-STD-883, Method 1014, Condition C
MIL-STD-883, Method 2002, Condition B
MIL-STD-883, Method 1004
J-STD-020, MSL 1
MIL-STD-202, Method 210, Condition K
MIL-STD-202, Method 215
MIL-STD-883, Method 2003
MIL-STD-883, Method 1010, Condition B
MIL-STD-883, Method 2007, Condition A
www.ecliptek.com | Specification Subject to Change Without Notice | Rev E 2/17/2010 | Page 1 of 6
EH2545ETTS-18.432M
MECHANICAL DIMENSIONS (all dimensions in millimeters)
PIN
CONNECTION
Tri-State
Ground
Output
Supply Voltage
7.00
±0.15
3
5.00
±0.15
MARKING
ORIENTATION
2
1.4 ±0.1
5.08
±0.15
4
2.20
±0.15
1
1.4 ±0.2
3.68
±0.15
1
2
3
4
LINE MARKING
1
2
3
ECLIPTEK
18.432M
PXXYZZ
P=Configuration Designator
XX=Ecliptek Manufacturing
Code
Y=Last Digit of the Year
ZZ=Week of the Year
1.60 ±0.20
Suggested Solder Pad Layout
All Dimensions in Millimeters
2.0 (X4)
2.2 (X4)
2.88
Solder Land
(X4)
1.81
All Tolerances are ±0.1
www.ecliptek.com | Specification Subject to Change Without Notice | Rev E 2/17/2010 | Page 2 of 6
EH2545ETTS-18.432M
OUTPUT WAVEFORM & TIMING DIAGRAM
TRI-STATE INPUT
V
IH
V
IL
CLOCK OUTPUT
V
OH
80% or 2.0V
DC
50% or 1.4V
DC
20% or 0.8V
DC
V
OL
OUTPUT DISABLE
(HIGH IMPEDANCE
STATE)
t
PLZ
Fall
Time
Rise
Time
T
W
T
Duty Cycle (%) = T
W
/T x 100
t
PZL
Test Circuit for TTL Output
Output Load
Drive Capability
10TTL
5TTL
2TTL
10LSTTL
1TTL
R
L
Value
(Ohms)
390
780
1100
2000
2200
C
L
Value
(pF)
15
15
6
15
3
Oscilloscope
Frequency
Counter
Table 1: R
L
Resistance Value and C
L
Capacitance
Value Vs. Output Load Drive Capability
Supply
Voltage
(V
DD
)
Probe
(Note 2)
Output
R
L
(Note 4)
+
+
Power
Supply
_
+
Voltage
Meter
_
Current
Meter
_
+
0.01µF
(Note 1)
0.1µF
(Note 1)
C
L
(Note 3)
Power
Supply
_
Ground
No Connect
or Tri-State
Note 1: An external 0.1µF low frequency tantalum bypass capacitor in parallel with a 0.01µF high frequency
ceramic bypass capacitor close to the package ground and V
DD
pin is required.
Note 2: A low capacitance (<12pF), 10X attenuation factor, high impedance (>10Mohms), and high bandwidth
(>300MHz) passive probe is recommended.
Note 3: Capacitance value C
L
includes sum of all probe and fixture capacitance.
Note 4: Resistance value R
L
is shown in Table 1. See applicable specification sheet for 'Load Drive Capability'.
Note 5: All diodes are MMBD7000, MMBD914, or equivalent.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev E 2/17/2010 | Page 3 of 6
EH2545ETTS-18.432M
Test Circuit for CMOS Output
Oscilloscope
Frequency
Counter
+
+
Power
Supply
_
+
Voltage
Meter
_
Current
Meter
_
Supply
Voltage
(V
DD
)
Probe
(Note 2)
Output
0.01µF
(Note 1)
0.1µF
(Note 1)
Ground
C
L
(Note 3)
No Connect
or Tri-State
Note 1: An external 0.1µF low frequency tantalum bypass capacitor in parallel with a 0.01µF high frequency
ceramic bypass capacitor close to the package ground and V
DD
pin is required.
Note 2: A low capacitance (<12pF), 10X attenuation factor, high impedance (>10Mohms), and high bandwidth
(>300MHz) passive probe is recommended.
Note 3: Capacitance value C
L
includes sum of all probe and fixture capacitance.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev E 2/17/2010 | Page 4 of 6
EH2545ETTS-18.432M
Recommended Solder Reflow Methods
T
P
Critical Zone
T
L
to T
P
Ramp-up
Ramp-down
Temperature (T)
T
L
T
S
Max
T
S
Min
t
S
Preheat
t 25°C to Peak
t
L
t
P
Time (t)
High Temperature Infrared/Convection
T
S
MAX to T
L
(Ramp-up Rate)
Preheat
- Temperature Minimum (T
S
MIN)
- Temperature Typical (T
S
TYP)
- Temperature Maximum (T
S
MAX)
- Time (t
S
MIN)
Ramp-up Rate (T
L
to T
P
)
Time Maintained Above:
- Temperature (T
L
)
- Time (t
L
)
Peak Temperature (T
P
)
Target Peak Temperature (T
P
Target)
Time within 5°C of actual peak (t
p
)
Ramp-down Rate
Time 25°C to Peak Temperature (t)
Moisture Sensitivity Level
Additional Notes
3°C/second Maximum
150°C
175°C
200°C
60 - 180 Seconds
3°C/second Maximum
217°C
60 - 150 Seconds
260°C Maximum for 10 Seconds Maximum
250°C +0/-5°C
20 - 40 seconds
6°C/second Maximum
8 minutes Maximum
Level 1
Temperatures shown are applied to body of device.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev E 2/17/2010 | Page 5 of 6
CMOS, Quartz Crystal Clock Oscillators XO (SPXO) HCMOS/TTL (CMOS) 5.0Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD) Quartz Crystal Clock Oscillators XO (SPXO) HCMOS/TTL (CMOS) 5.0Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD)
CMOS, Quartz Crystal Clock Oscillators XO (SPXO) HCMOS/TTL (CMOS) 5.0Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD) Quartz Crystal Clock Oscillators XO (SPXO) HCMOS/TTL (CMOS) 5.0Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD)
The list is out and can be seen here: https://en.eeworld.com/bbs/thread-1084541-1-1.html
Welcome everyone to guess the questions: https://en.eeworld.com/bbs/thread-1084544-1-1.htmlHere is the informat...
[i=s]This post was last edited by RCSN on 2019-1-6 14:33[/i] [font=宋体][size=4] I just got the board tonight. I have to say that Infineon's evaluation board is really well made. I don't like to post un...
1. Open the Subclass layer that needs to be displayed;2. Enter colorview create in the command window and press Enter.3. Enter the save file name in Save view and click Save.4. Click Close to close th...
[p=30, null, left][size=18px]STM8S003F3P6: A total of 20 pins, supports up to 16 GPIOs, supports 16 external interrupts; 2 16-bit timers [TIM1/TIM2], can output up to 3 PWM signals; 5 ADC channels, su...
LCD panel prices continued to fall in the third quarter, which means LG Display may incur losses again. ● The peak shipping season is about to begin and demand for LCDs will also increase, which wi...[Details]
Founded in 1995, Marvell was once ranked among the top five semiconductor companies in the world at its peak. When China issued 4G licenses in 2013, Marvell was ahead of MediaTek and Spreadtrum in la...[Details]
This application note describes the design of an interface to a single ended FM IF 183.6MHz filter. A passive LC network, balun, is used to provide the required balanced to unbalanced interface. Th...[Details]
Looking ahead to 2019, it’s exciting to know that, with nearly 10 years to go, the automobile is in the midst of its biggest transformation since its invention more than a century ago. With the conti...[Details]
Refer to the test introduction for two-terminal resistor networks. The maximum protection current of the 2400 protection buffer is 50mA. To calculate the current source settings for the 8-pin R1/R2, 1...[Details]
Recently, according to Tianyancha data, Smartisan Technology (Beijing) Co., Ltd. added four new equity pledge information. Luo Yonghao pledged his equity to Beijing Junxin Legend Public Relations Con...[Details]
NXP's new generation MCX A series MCU cooperates with the well-known FRDM development platform in the market to comprehensively optimize performance and equip independent peripherals in a cost-effect...[Details]
At the heart of the Chevrolet Volt is a sophisticated battery management system that ensures the safety and reliability of the multi-cell lithium-ion battery pack. GM engineers have also establishe...[Details]
Recently, according to foreign media reports, part of California State Route 905 was closed because Qualcomm wanted to use this road for autonomous driving testing. The California Department of Trans...[Details]
Compared with driving the vehicle to a car repair company for offline software upgrades, which takes a lot of time for the car owner and a lot of manpower costs for the car repair company, the Over-T...[Details]
Method of converting a three-phase motor into a two-phase motor:
1. When wiring, randomly select two of the three terminals on the original three-phase power line and connect a capacitor. The ...[Details]
(Image source: Nexperia official website) According to foreign media reports, power and discrete device expert Nexperia has launched the first high-power GaN field-effect transistor using silicon-...[Details]
In recent years, as the accuracy of ADAS (Advanced Driver Assistance Systems) has increased, the automotive industry has begun to install a large number of high-speed sensing devices such as millim...[Details]
This article introduces the main features, block diagram, 802.15.4 standard modem block diagram and MCU (HCS08, Version A) block diagram of the MC1321x series, as well as the 13213-Network Coordina...[Details]
CAN bus (Controller Area Network) is a communication protocol used in the automotive and industrial fields, which allows multiple devices to communicate on the same network. In some cases, it may b...[Details]