Am29LV017B
16 Megabit (2 M x 8-Bit)
CMOS 3.0 Volt-only Uniform Sector Flash Memory
DISTINCTIVE CHARACTERISTICS
s
Single power supply operation
— Full voltage range: 2.7 to 3.6 volt read and write
operations for battery-powered applications
— Regulated voltage range: 3.0 to 3.6 volt read and
write operations and for compatibility with high
performance 3.3 volt microprocessors
s
Manufactured on 0.32 µm process technology
s
High performance
— Full voltage range: access times as fast as 80 ns
— Regulated voltage range: access times as fast as
70 ns
s
Ultra low power consumption (typical values at 5
MHz)
— 200 nA Automatic Sleep mode current
— 200 nA standby mode current
— 9 mA read current
— 15 mA program/erase current
s
Flexible sector architecture
— Thirty-two 64 Kbyte sectors
— Supports full chip erase
— Sector Protection features:
A hardware method of locking a sector to prevent
any program or erase operations within that
sector
Sectors can be locked in-system or via
programming equipment
Temporary Sector Unprotect feature allows code
changes in previously locked sectors
s
Unlock Bypass Program Command
— Reduces overall programming time when issuing
multiple program command sequences
s
Embedded Algorithms
— Embedded Erase algorithm automatically
preprograms and erases the entire chip or any
combination of designated sectors
— Embedded Program algorithm automatically
writes and verifies data at specified addresses
s
Minimum 1,000,000 write cycle guarantee
per sector
s
20-year data retention at 125°C
— Reliable operation for the life of the system
s
Package option
— 48-ball FBGA
— 40-pin TSOP
s
CFI (Common Flash Interface) compliant
— Provides device-specific information to the
system, allowing host software to easily
reconfigure for different Flash devices
s
Compatibility with JEDEC standards
— Pinout and software compatible with single-
power supply Flash
— Superior inadvertent write protection
s
Data# Polling and toggle bits
— Provides a software method of detecting program
or erase operation completion
s
Ready/Busy# pin (RY/BY#)
— Provides a hardware method of detecting
program or erase cycle completion
s
Erase Suspend/Erase Resume
— Suspends an erase operation to read data from,
or program data to, a sector that is not being
erased, then resumes the erase operation
s
Hardware reset pin (RESET#)
— Hardware method to reset the device to reading
array data
This Data Sheet states AMD’s current technical specifications regarding the Products described herein. This Data
Sheet may be revised by subsequent versions or modifications due to changes in technical specifications.
Publication#
21415
Rev:
D
Amendment/+1
Issue Date:
April 12, 1999
GENERAL DESCRIPTION
The Am29LV017B is a 16 Mbit, 3.0 Volt-only Flash
memory organized as 2,097,152 bytes. The device is
offered in 48-ball FBGA and 40-pin TSOP packages.
The byte-wide (x8) data appears on DQ7–DQ0. All
read, program, and erase operations are accomplished
using only a single power supply. The device can also
be programmed in standard EPROM programmers.
The standard device offers access times of 70, 80, 90,
and 120 ns, allowing high speed microprocessors to
operate without wait states. To eliminate bus conten-
tion the device has separate chip enable (CE#), write
enable (WE#) and output enable (OE#) controls.
The device requires only a
single 3.0 volt power sup-
ply
for both read and write functions. Internally gener-
ated and regulated voltages are provided for the
program and erase operations.
The device is entirely command set compatible with the
JEDEC single-power-supply Flash standard.
Com-
mands are written to the command register using stan-
dard microprocessor write timings. Register contents
serve as input to an internal state-machine that con-
trols the erase and programming circuitry. Write cycles
also internally latch addresses and data needed for the
programming and erase operations. Reading data out
of the device is similar to reading from other Flash or
EPROM devices.
Device programming occurs by executing the program
command sequence. This initiates the
Embedded
Program
algorithm—an internal algorithm that auto-
matically times the program pulse widths and verifies
proper cell margin. The
Unlock Bypass
mode facili-
tates faster programming times by requiring only two
write cycles to program data instead of four.
Device erasure occurs by executing the erase com-
mand sequence. This initiates the
Embedded Erase
algorithm—an internal algorithm that automatically pre-
programs the array (if it is not already programmed) be-
fore executing the erase operation. During erase, the
device automatically times the erase pulse widths and
verifies proper cell margin.
The host system can detect whether a program or
erase operation is complete by observing the RY/BY#
pin, or by reading the DQ7 (Data# Polling) and DQ6
(toggle)
status bits.
After a program or erase cycle
has been completed, the device is ready to read array
data or accept another command.
The
sector erase architecture
allows memory sectors
to be erased and reprogrammed without affecting the
data contents of other sectors. The device is fully
erased when shipped from the factory.
Hardware data protection
measures include a low
V
CC
detector that automatically inhibits write opera-
tions during power transitions. The
hardware sector
protection
feature disables both program and erase
operations in any combination of the sectors of mem-
ory. This can be achieved in-system or via program-
ming equipment.
The
Erase Suspend
feature enables the user to put
erase on hold for any period of time to read data from,
or program data to, any sector that is not selected for
erasure. True background erase can thus be achieved.
The
hardware RESET# pin
terminates any operation
in progress and resets the internal state machine to
reading array data. The RESET# pin may be tied to the
system reset circuitry. A system reset would thus also
reset the device, enabling the system microprocessor
to read the boot-up firmware from the Flash memory.
The device offers two power-saving features. When
addresses have been stable for a specified amount of
time, the device enters the
automatic sleep mode.
The system can also place the device into the
standby
mode.
Power consumption is greatly reduced in both
these modes.
AMD’s Flash technology combines years of Flash
memory manufacturing experience to produce the
highest levels of quality, reliability and cost effective-
ness. The device electrically erases all bits within
a s ec tor simultaneously via Fowler-Nordheim tun-
neling. The data is programmed using hot electron injec-
tion.
2
Am29LV017B