TYPICAL PERFORMANCE CURVES
APT30GP60BDF1
APT30GP60BDF1
600V
POWER MOS 7 IGBT
®
TO-247
A new generation of high voltage power IGBTs. Using punch-through
technology and a proprietary metal gate, this IGBT has been optimized for very
fast switching, making it ideal for high frequency, high voltage switch-mode
power supplies and tail current sensitive applications. In many cases, the
POWER MOS 7
®
IGBT provides a lower cost alternative to a Power MOSFET.
G
C
E
• Low Conduction Loss
• Low Gate Charge
• Ultrafast Tail Current shutoff
• 100 kHz operation @ 400V, 37A
• 200 kHz operation @ 400V, 24A
• SSOA rated
G
E
C
MAXIMUM RATINGS
Symbol
V
CES
V
GE
V
GEM
I
C1
I
C2
I
CM
SSOA
P
D
T
J
,T
STG
T
L
Parameter
Collector-Emitter Voltage
Gate-Emitter Voltage
Gate-Emitter Voltage Transient
Continuous Collector Current @ T
C
= 25°C
Continuous Collector Current @ T
C
= 110°C
Pulsed Collector Current
1
All Ratings: T
C
= 25°C unless otherwise specified.
APT30GP60BDF1
UNIT
600
±20
±30
100
49
120
120A @ 600V
463
-55 to 150
300
Watts
°C
Amps
Volts
@ T
C
= 150°C
Switching Safe Operating Area @ T
J
= 150°C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
STATIC ELECTRICAL CHARACTERISTICS
Symbol
BV
CES
V
GE(TH)
V
CE(ON)
Characteristic / Test Conditions
Collector-Emitter Breakdown Voltage (V
GE
= 0V, I
C
= 500µA)
Gate Threshold Voltage
(V
CE
= V
GE
, I
C
= 1mA, T
j
= 25°C)
MIN
TYP
MAX
UNIT
600
3
4.5
2.2
2.1
500
2
8-2004
050-7401
Rev E
6
2.7
Volts
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 30A, T
j
= 25°C)
Collector-Emitter On Voltage (V
GE
= 15V, I
C
= 30A, T
j
= 125°C)
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 25°C)
2
I
CES
I
GES
µA
nA
Collector Cut-off Current (V
CE
= 600V, V
GE
= 0V, T
j
= 125°C)
Gate-Emitter Leakage Current (V
GE
= ±20V)
3000
±100
CAUTION:
These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
DYNAMIC CHARACTERISTICS
Symbol
C
ies
C
oes
C
res
V
GEP
Q
g
Q
ge
Q
gc
SSOA
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
t
d(on)
t
r
t
d(off)
t
f
E
on1
E
on2
E
off
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Gate-to-Emitter Plateau Voltage
Total Gate Charge
3
APT30GP60BDF1
Test Conditions
Capacitance
V
GE
= 0V, V
CE
= 25V
f = 1 MHz
Gate Charge
V
GE
= 15V
V
CE
= 300V
I
C
= 30A
T
J
= 150°C, R
G
= 5Ω, V
GE
=
15V, L = 100µH,V
CE
= 600V
Inductive Switching (25°C)
V
CC
(Peak) = 400V
V
GE
= 15V
I
C
= 30A
4
5
MIN
TYP
MAX
UNIT
pF
V
nC
A
3200
295
20
7.5
90
20
30
120
13
18
55
46
260
335
250
330
13
18
85
80
260
510
520
750
µ
J
ns
ns
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Switching Safe Operating Area
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
Turn-off Switching Energy
Turn-on Delay Time
Current Rise Time
Turn-off Delay Time
Current Fall Time
Turn-on Switching Energy
Turn-off Switching Energy
4
5
R
G
= 5Ω
T
J
= +25°C
Turn-on Switching Energy (Diode)
6
µ
J
Inductive Switching (125°C)
V
CC
(Peak) = 400V
V
GE
= 15V
I
C
= 30A
R
G
= 5Ω
T
J
= +125°C
Turn-on Switching Energy (Diode)
6
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
R
ΘJC
R
ΘJC
W
T
Characteristic
Junction to Case (IGBT)
Junction to Case (DIODE)
Package Weight
MIN
TYP
MAX
UNIT
°C/W
gm
.27
1.35
5.90
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, I
ces
includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 E
on1
is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 E
on2
is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 E
off
is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
050-7401
Rev E
8-2004
TYPICAL PERFORMANCE CURVES
60
50
40
30
20
T
C
=25°C
10
0
T
C
=125°C
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
60
50
40
30
20
10
0
APT30GP60BDF1
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
I
C
, COLLECTOR CURRENT (A)
T
C
=-55°C
I
C
, COLLECTOR CURRENT (A)
T
C
=-55°C
T
C
=25°C
T
C
=125°C
0
0.5
1
1.5
2
2.5
3
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
0.5
1
1.5
2
2.5
3
V
CE
, COLLECTER-TO-EMITTER VOLTAGE (V)
I
C
= 30A
T
J
= 25°C
FIGURE 1, Output Characteristics(V
GE
= 15V)
200
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 2, Output Characteristics (V
GE
= 10V)
16
14
12
10
8
6
4
2
0
0
10
20 30 40 50 60 70 80 90 100
GATE CHARGE (nC)
FIGURE 4, Gate Charge
180
I
C
, COLLECTOR CURRENT (A)
160
140
120
100
80
60
40
20
0
0
TJ = -55°C
V
CE
=120V
V
CE
=300V
V
CE
=480V
TJ = 25°C
TJ = 125°C
2
4
6
8
10
12
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (V)
4
3.5
3
2.5
2
1.5
1
0.5
3.5
3
2.5
2
1.5
1
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
I
C=
60A
I
C=
30A
I
C=
15A
I
C=
60A
I
C=
30A
I
C=
15A
8
10
12
14
16
V
GE
, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.2
1.15
1.10
1.05
1.0
0.95
0.90
0.85
0.8
-50
0
6
-25
0
25
50
75
100 125
T
J
, JUNCTION TRMPERATURE (°C)
FIGURE 6, On State Voltage vs Junction Temperature
140
0
-50
BV
CES
, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
I
C,
DC COLLECTOR CURRENT(A)
120
100
80
60
40
20
0
-50
8-2004
050-7401
-25
0
25 50
75 100 125 150
T
J
, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
0
25
50
75 100 125 150
T
C
, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
-25
Rev E
25
V
GE
= 10V
t
d (OFF)
, TURN-OFF DELAY TIME (ns)
t
d(ON)
, TURN-ON DELAY TIME (ns)
100
90
80
70
60
50
40
30
20
10
V
GE
=10V,T
J
=125°C
V
GE
=15V,T
J
=125°C
APT30GP60BDF1
V
CE
= 400V
R
G
= 5Ω
L = 100 µH
20
15
V
GE
= 15V
10
V
CE
= 400V
T
J
= 25°C, T
J
=125°C
R
G
= 5Ω
L = 100 µH
V
GE
=15V,T
J
=25°C
V
GE
=10V,T
J
=25°C
5
0
10
20
30
40
50
60
70
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
50
T
J
=
25 or 125°C,V
GE
=
10V
40
t
r,
RISE TIME (ns)
t
f,
FALL TIME (ns)
0
0
10
20
30
40
50
60
70
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
100
R
G
=
5Ω, L
=
100
µ
H, V
CE
=
400V
0
80
T
J
=
125°C, V
GE
=
10V or 15V
30
60
20
40
T
J
=
25°C, V
GE
=
10V or 15V
10
T
J
=
25 or 125°C,V
GE
=
15V
R
=
5Ω, L
=
100
µ
H, V
CE
=
400V
G
20
0
10
20
30
40
50
60
70
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
1400
E
ON2
, TURN ON ENERGY LOSS (µJ)
V
CE
= 400V
V
GE
= +15V
R
G
= 5
Ω
0
0
10
20
30
40
50
60
70
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
1400
E
OFF
, TURN OFF ENERGY LOSS (µJ)
V
CE
= 400V
V
GE
= +15V
R
G
= 5
Ω
0
T
J
=
125°C,V
GE
=
15V
1200
1000
800
600
400
200
0
1200
1000
800
600
400
200
T
=
125°C, V
GE
=
10V or 15V
J
T
J
=
125°C,V
GE
=
10V
T
=
25°C, V
GE
=
10V or 15V
J
T
J
=
25°C,V
GE
=
15V
T
J
=
25°C,V
GE
=
10V
0
10
20
30
40
50
60
70
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
2500
SWITCHING ENERGY LOSSES (µJ)
V
CE
= 400V
V
GE
= +15V
T
J
= 125
°
C
0
10
20
30
40
50
60
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
1600
SWITCHING ENERGY LOSSES (µJ)
V
CE
= 400V
V
GE
= +15V
R
G
= 5
Ω
0
2000
1200
E
on2,
60A
1500
E
on2,
60A
E
off,
60A
800
E
off,
60A
1000
E
on2,
30A
500
E
off,
30A
E
off,
15A
0
E
on2,
15A
8-2004
400
E
on2,
30A
E
off,
30A
E
on2,
15A
E
off,
15A
0
Rev E
050-7401
10
20
30
40
50
60
R
G
, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
25
50
75
100
125
T
J
, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
0
TYPICAL PERFORMANCE CURVES
10,000
5,000
1,000
500
Coes
100
50
Cres
I
C
, COLLECTOR CURRENT (A)
APT30GP60BDF1
140
Cies
120
100
80
60
40
20
0
C, CAPACITANCE ( F)
P
10
5
0
0
10
20
30
40
50
V
CE
, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0.30
0.25
0.20
0.9
0
100 200 300 400 500 600 700
V
CE
, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
Z
θ
JC
, THERMAL IMPEDANCE (°C/W)
0.7
0.15
0.5
Note:
PDM
0.10
0.3
t1
t2
0.05
0
0.1
0.05
10
-5
10
-4
SINGLE PULSE
Peak TJ = PDM x Z
θJC
+ TC
Duty Factor D = t1/t2
10
-3
10
-2
10
-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
RC MODEL
Junction
temp. ( ”C)
300
F
MAX
, OPERATING FREQUENCY (kHz)
0.0196
0.00500F
100
Power
(Watts)
0.107
0.0132F
50
F
max
=
min(f
max1
, f
max 2
)
f
max1
=
T
J
= 125
°
C
T
C
= 75
°
C
D = 50 %
V
CE
= 400V
R
G
= 5
Ω
0.144
Case temperature
0.135F
0.05
t
d(on )
+
t
r
+
t
d(off )
+
t
f
P
diss
−
P
cond
E
on 2
+
E
off
f
max 2
=
P
diss
=
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
10
20
30
40
50
60
I
C
, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
10
0
T
J
−
T
C
R
θ
JC
050-7401
Rev E
8-2004