D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
NTMD2C02R2
Preferred Device
Power MOSFET
2 Amps, 20 Volts
Complementary SOIC−8, Dual
These miniature surface mount MOSFETs feature ultra low R
DS(on)
and true logic level performance. They are capable of withstanding
high energy in the avalanche and commutation modes and the
drain−to−source diode has a very low reverse recovery time.
MiniMOSt devices are designed for use in low voltage, high speed
switching applications where power efficiency is important. Typical
applications are dc−dc converters, and power management in portable
and battery powered products such as computers, printers, cellular and
cordless phones. They can also be used for low voltage motor controls
in mass storage products such as disk drives and tape drives.
Features
http://onsemi.com
2 AMPERES
20 VOLTS
R
DS(on)
= 43 mW (N−Channel)
R
DS(on)
= 120 mW (P−Channel)
N−Channel
D
P−Channel
D
•
Ultra Low R
DS(on)
Provides Higher Efficiency and Extends
•
•
•
•
•
•
•
Battery Life
Logic Level Gate Drive
−
Can Be Driven by Logic ICs
Miniature SOIC−8 Surface Mount Package
−
Saves Board Space
Diode Is Characterized for Use In Bridge Circuits
Diode Exhibits High Speed, With Soft Recovery
I
DSS
Specified at Elevated Temperature
Mounting Information for SOIC−8 Package Provided
Pb−Free Packages are Available
G
S
G
S
8
1
SOIC−8
CASE 751
STYLE 14
MARKING DIAGRAM &
PIN ASSIGNMENT
ND ND PD PD
8
D2C02x
AYWW
G
G
1
NS NG PS PG
D2C02
x
A
Y
WW
G
= Specific Device Code
= Blank or S
= Assembly Location
= Year
= Work Week
= Pb−Free Package
MAXIMUM RATINGS
(T
J
= 25°C unless otherwise noted) (Note 1)
Rating
Drain−to−Source Voltage
N−Channel
P−Channel
Gate−to−Source Voltage
Drain Current
−
Continuous
−
Pulsed
N−Channel
P−Channel
N−Channel
P−Channel
Symbol
V
DSS
Value
20
20
±12
5.2
3.4
48
17
−55
to
150
2.0
62.5
260
Unit
Vdc
V
GS
I
D
I
DM
T
J
and
T
stg
P
D
R
qJA
T
L
Vdc
A
(Note: Microdot may be in either location)
°C
W
°C/W
°C
NTMD2C02R2SG
Operating and Storage Temperature Range
Total Power Dissipation @ T
A
= 25°C
(Note 2)
Thermal Resistance
−
Junction to Ambient
(Note 2)
Maximum Lead Temperature for Soldering
Purposes, 1/8″ from case for 10 seconds.
ORDERING INFORMATION
Device
NTMD2C02R2
NTMD2C02R2G
Package
SOIC−8
Shipping
†
2500/Tape & Reel
SOIC−8 2500/Tape & Reel
(Pb−Free)
SOIC−8 2500/Tape & Reel
(Pb−Free)
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
1. Negative signs for P−Channel device omitted for clarity.
2. Mounted on 2″ square FR4 board (1″ sq. 2 oz. Cu 0.06″ thick single sided) with
one die operating, 10 sec. max.
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D
Preferred
devices are recommended choices for future use
and best overall value.
©
Semiconductor Components Industries, LLC, 2006
March, 2006
−
Rev. 1
1
Publication Order Number:
NTMD2C02R2/D
NTMD2C02R2
ELECTRICAL CHARACTERISTICS
(T
A
= 25°C unless otherwise noted) (Note 3)
Characteristic
OFF CHARACTERISTICS
Drain−Source Breakdown Voltage
(V
GS
= 0 Vdc, I
D
= 250
mAdc)
Zero Gate Voltage Drain Current
(V
GS
= 0 Vdc, V
DS
= 20 Vdc)
(V
GS
= 0 Vdc, V
DS
= 12 Vdc)
Gate−Body Leakage Current
(V
GS
=
±
12 Vdc, V
DS
= 0)
ON CHARACTERISTICS
(Note 4)
Gate Threshold Voltage
(V
DS
= V
GS
, I
D
= 250
mAdc)
Drain−to−Source On−Resistance
(V
GS
= 4.5 Vdc, I
D
= 4.0 Adc)
(V
GS
= 4.5 Vdc, I
D
= 2.4 Adc)
Drain−to−Source On−Resistance
(V
GS
= 2.7 Vdc, I
D
= 2.0 Adc)
(V
GS
= 2.7 Vdc, I
D
= 1.2 Adc)
Forward Transconductance
(V
DS
= 2.5 Vdc, I
D
= 2.0 Adc)
(V
DS
= 2.5 Vdc, I
D
= 1.0 Adc)
DYNAMIC CHARACTERISTICS
Input Capacitance
Output Capacitance
Transfer Capacitance
SWITCHING CHARACTERISTICS
(Note 5)
Turn−On Delay Time
Rise Time
Turn−Off Delay Time
Fall Time
Turn−On Delay Time
Rise Time
Turn−Off Delay Time
Fall Time
Total Gate Charge
Gate−Source Charge
Gate−Drain Charge
(V
DS
= 10 Vdc, I
D
= 4.0 Adc,
V
GS
= 4.5 Vdc)
(V
DS
= 6.0 Vdc, I
D
= 2.0 Adc,
V
GS
= 4.5 Vdc)
(V
DS
= 16 Vdc, I
D
= 6.0 Adc,
V
GS
= 4.5 Vdc,
R
G
= 6.0
W)
(V
DS
= 10 Vdc, I
D
= 2.4 Adc,
V
GS
= 4.5 Vdc,
R
G
= 6.0
W)
(V
DD
= 16 Vdc, I
D
= 4.0 Adc,
V
GS
= 4.5 Vdc,
R
G
= 6.0
W)
(V
DD
= 10 Vdc, I
D
= 1.2 Adc,
V
GS
= 2.7 Vdc,
R
G
= 6.0
W)
t
d(on)
t
r
t
d(off)
t
f
t
d(on)
t
r
t
d(off)
t
f
Q
T
Q
1
Q
2
Q
3
(N)
(P)
(N)
(P)
(N)
(P)
(N)
(P)
(N)
(P)
(N)
(P)
(N)
(P)
(N)
(P)
(N)
(P)
(N)
(P)
(N)
(P)
(N)
(P)
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
11
15
35
40
45
35
60
35
12
10
50
35
45
33
80
29
12
10
1.5
1.5
4.0
5.0
3.0
3.0
18
−
65
−
75
−
110
−
20
20
90
65
75
60
130
55
20
18
−
−
−
−
−
−
nC
ns
(V
DS
= 10 Vdc, V
GS
= 0 Vdc,
f = 1.0 MHz)
C
iss
C
oss
C
rss
(N)
(P)
(N)
(P)
(N)
(P)
−
−
−
−
−
−
785
540
210
215
75
100
1100
750
450
325
180
175
pF
V
GS(th)
R
DS(on)
(N)
(P)
(N)
(P)
(N)
(P)
(N)
(P)
0.6
0.6
−
0.07
−
0.1
3.0
3.0
0.9
0.9
0.028
−
0.033
−
6.0
4.75
1.2
1.2
0.043
0.1
0.048
0.13
−
−
Vdc
W
V
(BR)DSS
I
DSS
(N)
(P)
(N)
(P)
−
20
20
−
−
−
−
−
−
−
−
−
−
1.0
1.0
100
Vdc
mAdc
Symbol
Polarity
Min
Typ
Max
Unit
I
GSS
nAdc
R
DS(on)
W
g
FS
Mhos
3. Negative signs for P−Channel device omitted for clarity.
4. Pulse Test: Pulse Width
≤
300
ms,
Duty Cycle
≤
2%.
5. Switching characteristics are independent of operating junction temperature.
http://onsemi.com
2
NTMD2C02R2
ELECTRICAL CHARACTERISTICS
−
continued
(T
A
= 25°C unless otherwise noted) (Note 6)
Characteristic
SOURCE−DRAIN DIODE CHARACTERISTICS
(T
C
= 25°C)
Forward Voltage (Note 7)
Reverse Recovery Time
(I
S
= 4.0 Adc, V
GS
= 0 Vdc)
(I
S
= 2.4 Adc, V
GS
= 0 Vdc)
V
SD
t
rr
t
a
(I
F
= I
S
,
dI
S
/dt = 100 A/ms)
Reverse Recovery Stored Charge
6. Negative signs for P−Channel device omitted for clarity.
7. Pulse Test: Pulse Width
≤
300
ms,
Duty Cycle
≤
2%.
t
b
Q
RR
(N)
(P)
(N)
(P)
(N)
(P)
(N)
(P)
(N)
(P)
−
−
−
−
−
−
−
−
−
−
0.83
0.88
30
37
15
16
15
21
0.02
0.025
1.1
1.0
−
−
−
−
−
−
−
−
mC
Vdc
ns
Symbol
Polarity
Min
Typ
Max
Unit
TYPICAL ELECTRICAL CHARACTERISTICS
N−Channel
12
I D, DRAIN CURRENT (AMPS)
10
8
6
4
2
0
0
V
GS
= 1.5 V
10 V
2.5 V
4.5 V
3.2 V
2.0 V
−I
D,
DRAIN CURRENT (AMPS)
T
J
= 25°C
1.8 V
4
P−Channel
V
GS
=
−2.1
V
V
GS
=
−10
V
V
GS
=
−4.5
V
V
GS
=
−2.5
V
T
J
= 25°C
V
GS
=
−1.9
V
3
2
V
GS
=
−1.7
V
1
V
GS
=
−1.5
V
0
0.25
0.5
0.75
1
1.25
1.5
V
DS
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
1.75
0
2
4
6
8
10
−V
DS
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)
Figure 1. On−Region Characteristics
Figure 2. On−Region Characteristics
12
10
8
6
4
2
0
0.5
100°C
25°C
T
J
=
−55°C
1
1.5
2
V
GS
, GATE−TO−SOURCE VOLTAGE (VOLTS)
2.5
−I
D,
DRAIN CURRENT (AMPS)
ID, DRAIN CURRENT (AMPS)
V
DS
≥
10 V
5
V
DS
≥
−10
V
4
3
2
1
0
T
J
= 25°C
T
J
= 100°C
1
1.5
T
J
= 55°C
2
2.5
3
−V
GS
, GATE−TO−SOURCE VOLTAGE (VOLTS)
Figure 3. Transfer Characteristics
Figure 4. Transfer Characteristics
http://onsemi.com
3
NTMD2C02R2
TYPICAL ELECTRICAL CHARACTERISTICS
R DS(on) , DRAIN−TO−SOURCE RESISTANCE (OHMS)
R
DS(on)
, DRAIN−TO−SOURCE RESISTANCE (W)
N−Channel
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0
0
2
4
6
8
V
GS
, GATE−TO−SOURCE VOLTAGE (VOLTS)
10
I
D
= 6.0 A
T
J
= 25°C
P−Channel
0.2
T
J
= 25°C
0.15
0.1
0.05
0
2
4
6
8
−V
GS,
GATE−TO−SOURCE VOLTAGE (VOLTS)
R DS(on) , DRAIN−TO−SOURCE RESISTANCE (OHMS)
R
DS(on)
, DRAIN−TO−SOURCE RESISTANCE (W)
Figure 5. On−Resistance versus
Gate−To−Source Voltage
0.05
T
J
= 25°C
0.04
V
GS
= 2.5 V
0.03
4.5 V
Figure 6. On−Resistance versus
Gate−To−Source Voltage
0.12
T
J
= 25°C
0.1
V
GS
=
−2.7
V
0.08
V
GS
=
−4.5
V
0.06
0.02
0.01
1
3
5
7
9
I
D
, DRAIN CURRENT (AMPS)
11
13
0.04
1
1.5
2
2.5
3
3.5
4
4.5
−I
D,
DRAIN CURRENT (AMPS)
Figure 7. On−Resistance versus Drain Current
and Gate Voltage
RDS(on) , DRAIN−TO−SOURCE RESISTANCE
(NORMALIZED)
1.6
1.4
1.2
1
0.8
0.6
−50
I
D
= 6.0 A
V
GS
= 4.5 V
R
DS(on)
, DRAIN−TO−SOURCE
RESISTANCE (NORMALIZED)
Figure 8. On−Resistance versus Drain Current
and Gate Voltage
1.6
1.4
1.2
1
0.8
0.6
−50
I
D
=
−2.4
A
V
GS
=
−4.5
V
−25
0
25
50
75
100 125
T
J
, JUNCTION TEMPERATURE (°C)
150
−25
0
25
75
50
100
125
T
J,
JUNCTION TEMPERATURE (°C)
150
Figure 9. On−Resistance Variation with
Temperature
http://onsemi.com
4
Figure 10. On−Resistance Variation with
Temperature