PD - 94167A
HEXFET
®
POWER MOSFET
THRU-HOLE (TO-257AA)
IRFY11N50CMA
500V, N-CHANNEL
Product Summary
Part Number
IRFY11N50CMA
BVDSS
500V
R
DS(on)
0.56Ω
I
D
10A
Fifth Generation HEXFET
®
power MOSFETs from
International Rectifier utilize advanced processing
techniques to achieve the lowest possible on-resistance
per silicon unit area. This benefit, combined with the
fast switching speed and ruggedized device design
that HEXFET power MOSFETs are well known for,
provides the designer with an extremely efficient device
for use in a wide variety of applications.
These devices are well-suited for applications such
as switching power supplies, motor controls, invert-
ers, choppers, audio amplifiers and high-energy pulse
circuits.
TO-257AA
Features:
n
n
n
n
n
n
n
Low R
DS(on)
Avalanche Energy Ratings
Dynamic dv/dt Rating
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Light Weight
Absolute Maximum Ratings
Parameter
ID @ VGS = 10V, TC = 25°C
ID @ VGS = 10V, TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current
➀
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
➁
Avalanche Current
➀
Repetitive Avalanche Energy
➀
Peak Diode Recovery dv/dt
➂
Operating Junction
Storage Temperature Range
Lead Temperature
Weight
For footnotes refer to the last page
10
6.6
40
125
1.0
±20
205
10
12.5
9.6
-55 to 150
o
Units
A
W
W/°C
V
mJ
A
mJ
V/ns
C
300 (0.063in./1.6mm from case for 10sec)
4.3 (Typical)
g
www.irf.com
1
08/07/01
IRFY11N50CMA
Electrical Characteristics
@ Tj = 25°C (Unless Otherwise Specified)
Parameter
BVDSS
Drain-to-Source Breakdown Voltage
∆BV
DSS/∆T J Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
gfs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
Min
500
—
—
—
2.0
6.0
—
—
—
—
—
—
—
—
—
—
—
—
Typ Max Units
—
0.59
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
6.8
—
—
0.56
0.65
4.0
—
25
250
100
-100
58
15
26
22
71
47
43
—
V
V/°C
Ω
V
S( )
µA
Ω
Test Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1.0mA
VGS = 10V, ID = 6.6A
➃
VGS = 10V, ID = 10A
VDS = VGS, ID = 250µA
VDS
≥
15V, IDS = 6.6A
➃
VDS = 500V ,VGS=0V
VDS = 400V,
VGS = 0V, TJ =125°C
VGS = 20V
VGS = -20V
VGS =10V, ID = 10A
VDS = 400V
VDD = 250V, ID = 10A,
VGS =10V, RG = 9.1Ω
IGSS
IGSS
Qg
Q gs
Q gd
td
(on)
tr
td
(off)
tf
LS + LD
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
nA
nC
ns
nH
Measured from drain lead (6mm/
0.25in. from package) to source
lead (6mm/0.25in. from package)
VGS = 0V, VDS = 25V
f = 1.0MHz
Ciss
C oss
C rss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
1390
216
12
—
—
—
pF
Source-Drain Diode Ratings and Characteristics
Parameter
IS
ISM
VSD
t rr
Q RR
ton
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode)
➀
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min Typ Max Units
—
—
—
—
—
—
—
—
—
—
10
40
1.5
660
4.5
Test Conditions
A
V
ns
µC
T
j
= 25°C, IS = 10A, VGS = 0V
➃
Tj = 25°C, IF = 10A, di/dt
≤
100A/µs
VDD
≤
50V
➃
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
Thermal Resistance
Parameter
RthJC
Junction-to-Case
Min Typ Max Units
—
—
1.0
°C/W
Test Conditions
Note: Corresponding Spice and Saber models are available on the G&S Website.
For footnotes refer to the last page
2
www.irf.com
IRFY11N50CMA
100
I
D
, Drain-to-Source Current (A)
I
D
, Drain-to-Source Current (A)
10
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
100
10
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
1
1
4.5V
0.1
0.1
4.5V
0.01
0.1
1
20µs PULSE WIDTH
T = 25 C
J
°
10
100
0.01
0.1
20µs PULSE WIDTH
T = 150 C
J
°
1
10
100
V
DS
, Drain-to-Source Voltage (V)
V
DS
, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
100
3.0
R
DS(on)
, Drain-to-Source On Resistance
(Normalized)
I
D
= 10A
I
D
, Drain-to-Source Current (A)
2.5
10
T
J
= 150
°
C
T
J
= 25
°
C
2.0
1.5
1
1.0
0.5
0.1
4.0
15
V DS = 50V
20µs PULSE WIDTH
8.0
9.0
5.0
6.0
7.0
10.0
0.0
-60 -40 -20
V
GS
= 10V
0
20
40
60
80 100 120 140 160
V
GS
, Gate-to-Source Voltage (V)
T
J
, Junction Temperature(
°
C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
www.irf.com
3
IRFY11N50CMA
2400
2000
V
GS
, Gate-to-Source Voltage (V)
V
GS
=
C
iss
=
C
rss
=
C
oss
=
0V,
f = 1MHz
C
gs
+ C
gd ,
C
ds
SHORTED
C
gd
C
ds
+ C
gd
20
I
D
= 10A
16
V
DS
= 400V
V
DS
= 250V
V
DS
= 100V
C, Capacitance (pF)
1600
C
iss
12
1200
C
oss
8
800
400
C
rss
4
0
1
10
100
0
0
10
20
FOR TEST CIRCUIT
SEE FIGURE 13
30
40
50
60
V
DS
, Drain-to-Source Voltage (V)
Q
G
, Total Gate Charge (nC)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
100
1000
OPERATION IN THIS AREA
LIMITED BY R DS(on)
I
SD
, Reverse Drain Current (A)
10
T
J
= 150
°
C
T
J
= 25
°
C
ID, Drain-to-Source Current (A)
100
10
1
1ms
1
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
1
10
100
1000
10000
VDS , Drain-toSource Voltage (V)
10ms
0.1
0.2
V
GS
= 0 V
0.6
1.0
1.4
1.8
V
SD
,Source-to-Drain Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRFY11N50CMA
10.0
V
DS
V
GS
R
D
8.0
D.U.T.
+
I
D
, Drain Current (A)
R
G
-
V
DD
6.0
V
GS
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1 %
4.0
Fig 10a.
Switching Time Test Circuit
2.0
V
DS
90%
0.0
25
50
75
100
125
150
T
C
, Case Temperature ( ° C)
10%
V
GS
Fig 9.
Maximum Drain Current Vs.
Case Temperature
t
d(on)
t
r
t
d(off)
t
f
Fig 10b.
Switching Time Waveforms
10
Thermal Response (Z
thJC
)
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.0001
SINGLE PULSE
(THERMAL RESPONSE)
0.01
0.00001
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJC
+ T
C
0.1
0.001
0.01
P
DM
t
1
t
2
1
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5