D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
KSC5302D
KSC5302D
High Voltage High Speed Power Switch
Application
High Breakdown Voltage : BV
CBO
=800V
Built-in Free-wheeling Diode makes efficient anti saturation operation
Suitable for half bridge light ballast Applications
No need to interest an h
FE
value because of low variable storage-time
spread
• Even though corner spirit product
• Low base drive requirement
•
•
•
•
B
Equivalent Circuit
C
1
E
TO-220
2.Collector
3.Emitter
1.Base
NPN Silicon Transistor
Absolute Maximum Ratings
T
C
=25°C unless otherwise noted
Symbol
V
CBO
V
CEO
V
EBO
I
C
I
CP
I
B
I
BP
P
C
T
J
T
STG
Parameter
Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current (DC)
*Collector Current (Pulse)
Base Current (DC)
*Base Current (Pulse)
Power Dissipation(T
C
=25°C)
Junction Temperature
Storage Temperature
Value
800
400
12
2
5
1
2
50
150
- 55 ~ 150
Units
V
V
V
A
A
A
A
W
°C
°C
Thermal Characteristics
T
C
=25°C unless otherwise noted
Symbol
R
θjc
R
θja
Thermal Resistance
Characteristics
Junction to Case
Junction to Ambient
Rating
2.5
62.5
Unit
°C/W
©2001 Fairchild Semiconductor Corporation
Rev. A1, June 2001
KSC5302D
Electrical Characteristics
T
C
=25°C unless otherwise noted
Symbol
BV
CBO
BV
CEO
BV
EBO
I
CBO
I
EBO
h
FE1
h
FE2
V
CE
(sat)
V
BE
(sat)
C
ob
t
ON
t
STG
t
F
t
STG
t
F
V
F
t
rr
Parameter
Collector-Base Breakdown Voltage
Collector-Emitter Breakdown Voltage
Emitter Cut-off Current
Collector Cut-off Current
Emitter Cut-off Current
DC Current Gain
Collector-Emitter Saturation Voltage
Base-Emitter Saturation Voltage
Output Capacitance
Turn ON time
Storage Time
Fall Time
Storage Time
Fall Time
Diode Forward Voltage
*Reverse Recovery Time
(di/dt = 10A/µs)
Test Condition
I
C
=1mA, I
E
=0
I
C
=5mA, I
B
=0
I
E
=1mA, I
C
=0
V
CB
=500V, I
E
=0
V
EB
= 9V, I
C
= 0
V
CE
=1V, I
C
=0.4A
V
CE
=1V, I
C
=1A
I
C
=0.4A, I
B
=0.04A
I
C
=1A, I
B
=0.2A
I
C
=0.4A, I
B
=0.04A
I
C
=1A, I
B
=0.2A
V
CB
= 10V, f=1MHz
V
CC
=300V, I
C
=1A
I
B1
= 0.2A, I
B2
=-0.5A,
R
L
= 300Ω
V
CC
=15V, V
Z
=300V
I
C
= 0.8A, I
B1
= 0.16A
I
B2
= -0.16A , L = 200µH
I
F
= 0.4A
I
F
= 1A
I
F
= 0.2A
I
F
= 0.4A
I
F
= 1A
Min.
800
400
12
-
-
20
10
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Typ.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
800
1
1.4
Max.
-
-
-
10
10
-
-
0.4
0.5
0.9
1.0
75
150
2
0.2
2.35
150
1.2
1.5
-
-
-
V
V
V
V
pF
ns
µs
µs
µs
ns
V
V
ns
µs
µs
Units
V
V
V
µA
µA
*Pulse Test : Pulse Width=5mS, Duty cycles
≤
10%
©2001 Fairchild Semiconductor Corporation
Rev. A1, June 2001
KSC5302D
Typcial Characteristics
5
I
C
[A], COLLECTOR CURRENT
4
3
I
B
= 100mA
2
h
FE
, DC CURRENT GAIN
I
B
= 500mA
I
B
= 450mA
I
B
= 400mA
I
B
= 350mA
I
B
= 300mA
I
B
= 250mA
I
B
= 200mA
I
B
= 150mA
100
T
a
= 125 C
25 C
o
-25 C
o
o
V
CE
= 5V
10
I
B
= 50mA
1
I
B
= 0
0
0
1
2
3
4
5
6
7
8
9
10
1
0.01
0.1
1
10
V
CE
[V], COLLECTOR-EMITTER VOLTAGE
I
C
[A], COLLECTOR CURRENT
Figure 1. Static Characteristic
Figure 2. DC current Gain
V
BE
(sat), V
CE
(sat)[V], SATURATION VOLTAGE
100
10
T
a
= 125 C
25 C
o
o
V
CE
= 1V
I
C
= 10 I
B
h
FE
, DC CURRENT GAIN
-20 C
o
1
V
BE
(sat)
10
V
CE
(sat)
0.1
1
0.01
0.1
1
10
0.01
0.01
0.1
1
10
I
C
[A], COLLECTOR CURRENT
I
C
[A], COLLECTOR CURRENT
Figure 3. DC current Gain
Figure 4. Collector-Emitter Saturation Voltage
Base-Emitter Saturation Voltage
10
10
I
C
= 5I
B
I
C
= 5I
B
V
CE
(sat)[V], SATURATION VOLTAGE
25 C
1
o
V
BE
[V], SATURATION VOLTAGE
T
a
= 125 C
0.1
o
1
-20 C
25 C
T
a
= 125 C
o
o
o
-20 C
o
0.01
0.01
0.1
1
10
0.1
0.01
0.1
1
10
I
C
[A], COLLECTOR CURRENT
I
C
[A], COLLECTOR CURRENT
Figure 5. Collector-Base Saturation Voltage
Figure 6. Base-Emitter Saturation Voltage
©2001 Fairchild Semiconductor Corporation
Rev. A1, June 2001
KSC5302D
Typical Characteristics
(Continued)
10
10
t
STG
, t
F
[
µ
s], TIME
1
t
STG
V
F
[V], FORWARD DIODE VOLTAGE
10
V
CC
= 300V
I
C
= 5I
B1
= -2.5I
B2
1
t
F
0.1
0.01
0.1
1
0.1
0.01
0.1
1
10
I
C
[A], COLLECTOR CURRENT
I
F
[A], FORWARD DIODE CURRENT
Figure 7. Switching Time
Figure 8. Forwrd Diode Voltage
1.6
1000
di/dt = 10A/
µ
s
f = 1MHz
trr[
µ
s], REVERSE RECOVERY TIME
C
ob
[pF], CAPACITANCE
1.4
100
1.2
1.0
10
0.8
1
0.2
0.4
0.6
0.8
1.0
1
10
100
I
f
[A], FORWARD CURRENT
V
CB
[V], COLLECTOR-BASE VOLTAGE
Figure 9. Reverse Recovery Time
Figure 10. Collector Outpt Capacitance
100
80
I
C
[A], COLLECTOR CURRENT
10
P
C
[W], POWER DISSIPATION
1000
60
DC
1
5ms
1ms
10
µ
s
1
µ
s
40
0.1
20
0.01
10
100
0
0
25
50
o
75
100
125
150
175
V
CE
[V], COLLECTOR-EMITTER VOLTAGE
T
C
[ C], CASE TEMPERATURE
Figure 11. Safe Operating Area
Figure 12. Power Derating
©2001 Fairchild Semiconductor Corporation
Rev. A1, June 2001