D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu r xmu ai s
o
a
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
DS80C310
High-Speed Microcontroller
www.maxim-ic.com
GENERAL DESCRIPTION
The DS80C310 is a fast 80C31/80C32-compatible
microcontroller. It features a redesigned processor
core without wasted clock and memory cycles. As a
result, it executes every 8051 instruction between 1.5x
and 3x faster than the original architecture for the
same crystal speed. Typical applications have a speed
improvement of 2.5x using the same code and the
same crystal. The DS80C310 offers a 33MHz
maximum crystal speed, resulting in apparent
execution speeds of 82.5MHz (approximately 2.5x).
The DS80C310 is pin compatible with the standard
80C32 and includes standard resources such as three
timer/counters, 256 bytes of RAM, and a serial port. It
also provides dual data pointers (DPTRs) to speed
block data memory moves. It also can adjust the speed
of MOVX data memory access between two and nine
machine cycles for flexibility in selecting external
memory and peripherals. The DS80C310 offers
upward compatibility with the DS80C320.
PIN CONFIGURATIONS
TOP VIEW
FEATURES
80C32 Compatible
8051 Pin and Instruction Set Compatible
Full-Duplex Serial Port
Three 16-Bit Timer/Counters
256 Bytes Scratchpad RAM
Multiplexed Address/Data Bus
Addresses 64kB ROM and 64kB RAM
High-Speed Architecture
4 Clocks/Machine Cycle (8051 = 12)
Runs DC to 33MHz Clock Rates
Single-Cycle Instruction in 121ns
Dual Data Pointer
Optional Variable Length MOVX to Access
Fast/Slow RAM /Peripherals
10 Total Interrupt Sources with 6 External
Internal Power-On Reset Circuit
Upwardly Compatible with the DS80C320
Available in 40-Pin Plastic DIP, 44-Pin PLCC,
and 44-Pin TQFP
Note:
Designers must have two documents to fully use all the features
of this device: this data sheet and the High-Speed Microcontroller
User’s Guide, available on our website at
www.maxim-
ic.com/microcontrollers
. Data sheets contain pin descriptions,
feature overviews, and electrical specifications, whereas the user’s
guide contains detailed information about device features and
operation.
Note:
Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device
may be simultaneously available through various sales channels. For information about device errata, click here:
www.maxim-ic.com/errata.
1 of 24
REV: 042106
DS80C310
ORDERING INFORMATION
PART
DS80C310-MCG
DS80C310-MCG+
DS80C310-QCG
DS80C310-QCG+
DS80C310-QNG
DS80C310-QNG+
DS80C310-ECG
DS80C310-ECG+
TEMP RANGE
0°C to +70°C
0°C to +70°C
0°C to +70°C
0°C to +70°C
-40°C to +85°C
-40°C to +85°C
0°C to +70°C
0°C to +70°C
MAX CLOCK
SPEED (MHz)
25
25
25
25
25
25
25
25
PIN-PACKAGE
40 Plastic DIP
40 Plastic DIP
44 PLCC
44 PLCC
44 PLCC
44 PLCC
44 TQFP
44 TQFP
+
Denotes a lead-free/RoHS-compliant device.
Figure 1. Block Diagram
DS80C310
2 of 24
DS80C310
PIN DESCRIPTION
PDIP
PIN
PLCC
TQFP
NAME
FUNCTION
Port 1 (I/O). Port 1 functions as both an 8-bit bidirectional I/O port
and an alternate functional interface for Timer 2 I/O and new
external interrupts. The reset condition of Port 1 is with all bits at
logic 1. In this state, a weak pullup holds the port high. This
condition also serves as an input mode, since any external circuit
that writes to the port overcomes the weak pullup. When software
writes a 0 to any port pin, the DS80C310 activates a strong pulldown
that remains on until either a 1 is written or a reset occurs. Writing a
1 after the port has been at 0 causes a strong transition driver to turn
on, followed by a weaker sustaining pullup. Once the momentary
strong driver turns off, the port once again becomes the output high
(and input) state. The alternate modes of Port 1 are outlined as
follows:
PIN
PORT ALTERNATE
FUNCTION
PDIP PLCC TQFP
External I/O for
Timer/Counter 2
Timer/Counter 2
Capture/Reload
2
3
41
P1.1
T2EX
Trigger
DS80C320 has a serial
3
4
42
P1.2
—
port RXD
DS80C320 has a serial
4
5
43
P1.3
—
port TXD
External Interrupt 2
5
6
44
P1.4
INT2
(Positive Edge Detect)
External Interrupt 3
6
7
1
P1.5
(Negative Edge
INT3
Detect)
External Interrupt 4
7
8
2
P1.6
INT4
(Positive Edge Detect)
External Interrupt 5
8
9
3
P1.7
(Negative Edge
INT5
Detect)
Reset (Input). The RST input pin contains a Schmitt voltage input to
recognize external active-high reset inputs. The pin also employs an
internal pulldown resistor to allow for a combination of wired-OR
external reset sources.
1
2
40
P1.0
T2
1–8
2–9
40–44,
1, 2, 3
P1.0–P1.7
9
10
4
RST
3 of 24
DS80C310
PDIP
PIN
PLCC
TQFP
NAME
FUNCTION
Port 3 (I/O). Port 3 functions as both an 8-bit bidirectional I/O port
and an alternate functional interface for external Interrupts, Serial
Port 0, Timer 0 and 1 Inputs,
RD
and
WR
strobes. The reset
condition of Port 3 is with all bits at logic 1. In this state, a weak
pullup holds the port high. This condition also serves as an input
mode, since any external circuit that writes to the port will overcome
the weak pullup. When software writes a 0 to any port pin, the
DS80C310 will activate a strong pulldown that remains on until
either a 1 is written or a reset occurs. Writing a 1 after the port has
been at 0 will cause a strong transition driver to turn on, followed by
a weaker sustaining pullup. Once the momentary strong driver turns
off, the port once again becomes both the output high and input
state. The alternate modes of Port 3 are as follows:
PDIP
10
PIN
PLCC
11
TQFP
5
PORT
P3.0
ALTERNATE
RXD0
FUNCTION
10–17
11,
13–19
5, 7–13
P3.0–P3.7
18, 19
20
21
22
23
24
25
26
27
28
20, 21
1, 22,
23
24
25
26
27
28
29
30
31
14, 15
16, 17,
39
18
19
20
21
22
23
24
25
XTAL2,
XTAL1
GND
A8 (P2.0)
A9 (P2.1)
A10 (P2.2)
A11 (P2.3)
A12 (P2.4)
A13 (P2.5)
A14 (P2.6)
A15 (P2.7)
Serial Port 0
Input
Serial Port 0
11
13
7
P3.1
TXD0
Output
External Interrupt
INT0
12
14
8
P3.2
0
External Interrupt
INT1
13
15
9
P3.3
1
Timer 0 External
14
16
10
P3.4
T0
Input
Timer 1 External
15
17
11
P3.5
T1
Input
External Data
WR
Memory Write
16
18
12
P3.6
Strobe
External Data
RD
17
19
13
P3.7
Memory Read
Strobe
Crystal Oscillator Pins. XTAL1 and XTAL2 provide support for
parallel resonant, AT-cut crystals. XTAL1 also acts as an input in
the event that an external clock source is used in place of a crystal.
XTAL2 serves as the output of the crystal amplifier.
Digital Circuit Ground
Address Outputs (Port 2) (Output). Port 2 serves as the MSB for
external addressing. P2.7 is A15 and P2.0 is A8. The DS80C310
automatically places the MSB of an address on P2 for external ROM
and RAM access. Although Port 2 can be accessed like an ordinary
I/O port, the value stored on the Port 2 latch is never seen on the pins
(due to memory access). Therefore, writing to Port 2 in software is
only useful for the instructions MOVX A, @ Ri or MOVX @ Ri, A.
These instructions use the Port 2 internal latch to supply the external
address MSB; the Port 2 latch value is supplied as the address
information.
4 of 24