Bulletin I27130 rev. G 10/02
IRK.26 SERIES
THYRISTOR/ DIODE and
THYRISTOR/ THYRISTOR
Features
High Voltage
Industrial Standard Package
Thick Al metal die and double stick bonding
Thick copper baseplate
UL E78996 approved
3500V
RMS
isolating voltage
ADD-A-pak
TM
GEN V Power Modules
Benefits
Up to 1600V
Full compatible TO-240AA
High Surge capability
Easy Mounting on heatsink
Al
2
0
3
DBC insulator
Heatsink grounded
27 A
Mechanical Description
The Generation V of Add-A-pak module combine the
excellent thermal performance obtained by the usage of
Direct Bonded Copper substrate with superior
mechanical ruggedness, thanks to the insertion of a solid
Copper baseplate at the bottom side of the device.
The Cu baseplate allow an easier mounting on the
majority of heatsink with increased tolerance of surface
roughness and improve thermal spread.
The Generation V of AAP module is manufactured without
hard mold, eliminating in this way any possible direct
stress on the leads.
The electrical terminals are secured against axial pull-out:
they are fixed to the module housing via a click-stop feature
already tested and proved as reliable on other IR modules.
Electrical Description
These modules are intended for general purpose
high voltage applications such as high voltage regu-
lated power supplies, lighting circuits, temperature
and motor speed control circuits, UPS and battery
charger.
Major Ratings and Characteristics
Parameters
I
T(AV)
or I
F(AV)
@ 85°C
I
O(RMS)
(*)
I
TSM
@ 50Hz
I
FSM
@ 60Hz
I
2
t
@ 50Hz
@ 60Hz
I
2
√t
V
RRM
range
T
STG
T
J
(*) As AC switch.
IRK.26
27
60
400
420
800
730
8000
400 to 1600
- 40 to 125
- 40 to125
Units
A
A
A
A
A
2
s
A
2
s
A
2
√s
V
o
o
C
C
www.irf.com
1
IRK.26 Series
Bulletin I27130 rev. G 10/02
ELECTRICAL SPECIFICATIONS
Voltage Ratings
Type number
Voltage
Code
-
04
06
08
IRK.26
10
12
14
16
V
RRM
, maximum
V
RSM
, maximum
V
DRM
, max. repetitive
repetitive
non-repetitive
peak off-state voltage,
peak reverse voltage peak reverse voltage
gate open circuit
V
V
V
400
600
800
1000
1200
1400
1600
500
700
900
1100
1300
1500
1700
400
600
800
1000
1200
1400
1600
I
RRM
I
DRM
125°C
mA
15
On-state Conduction
Parameters
I
T(AV)
I
F(AV)
Max. average on-state
current (Thyristors)
Max. average forward
current (Diodes)
I
O(RMS
)
Max. continuous RMS
on-state current.
As AC switch
I
TSM
or
I
FSM
Max. peak, one cycle
non-repetitive on-state
or forward current
60
A
400
420
335
350
470
490
I t
2
2
IRK.26
27
27
Units
Conditions
180
o
conduction, half sine wave,
T
C
= 85
o
C
I
(RMS)
t=10ms
t=8.3ms
t=10ms
t=8.3ms
t=10ms
t=8.3ms
t=10ms
t=8.3ms
t=10ms
t=8.3ms
t=10ms
t=8.3ms
reapplied
or
I
(RMS)
Sinusoidal
half wave,
Initial T
J
= T
J
max.
No voltage
100% V
RRM
reapplied
T
J
= 25
o
C,
no voltage reapplied
No voltage
reapplied
100% V
RRM
reapplied
T
J
= 25
o
C,
no voltage reapplied
Initial T
J
= T
J
max.
Max. I t for fusing
800
730
560
510
1100
1000
A
2
s
I
2
√t
Max. I
2
√t
for fusing (1)
voltage (2)
8000
0.92
0.95
12.11
11.82
1.95
A
2
√s
V
mΩ
t= 0.1 to 10ms, no voltage reappl. T
J
=T
J
max
Low level (3)
High level (4)
Low level (3)
High level (4)
I
TM
=
π
x I
T(AV)
I
FM
=
π
x I
F(AV)
T
J
= 25
o
C, from 0.67 V
DRM
,
I
TM
=π x I
T(AV)
,
I = 500mA,
g
V
T(TO)
Max. value of threshold
r
t
V
TM
V
FM
di/dt
Max. value of on-state
slope resistance (2)
Max. peak on-state or
forward voltage
Max. non-repetitive rate
of rise of turned on
current
I
H
I
L
Max. holding current
Max. latching current
T
J
= T
J
max
T
J
= T
J
max
T
J
= 25
o
C
V
150
200
A/µs
t
r
< 0.5 µs, t
p
> 6 µs
T
J
= 25
o
C, anode supply = 6V,
mA
400
resistive load, gate open circuit
T
J
= 25
o
C, anode supply = 6V, resistive load
(3) 16.7% x
π
x I
AV
< I <
π
x I
AV
(1) I
2
t for time t
x
=
I
2
√
t x
√
t
x
(4) I >
π
x I
AV
(2) Average power
=
V
T(TO)
x I
T(AV)
+
r
t
x (I
T(RMS)
)
2
2
www.irf.com
IRK.26 Series
Bulletin I27130 rev. G 10/02
Triggering
Parameters
P
GM
I
GM
Max. peak gate power
IRK. 26
10
2.5
2.5
10
4.0
2.5
1.7
270
150
80
0.25
6
Units
W
A
Conditions
P
G(AV)
Max. average gate power
Max. peak gate current
gate voltage
V
GT
Max. gate voltage
required to trigger
I
GT
Max. gate current
required to trigger
V
GD
I
GD
Max. gate voltage
that will not trigger
Max. gate current
that will not trigger
-V
GM
Max. peak negative
V
T
J
= - 40°C
T
J
= 25°C
T
J
= 125°C
T
J
= - 40°C
T
J
= 25°C
T
J
= 125°C
Anode supply = 6V
resistive load
Anode supply = 6V
resistive load
mA
V
mA
T
J
= 125
o
C,
rated V
DRM
applied
T
J
= 125
o
C,
rated V
DRM
applied
Blocking
Parameters
I
RRM
I
DRM
V
INS
Max. peak reverse and
off-state leakage current
at V
RRM
, V
DRM
RMS isolation voltage
2500 (1 min)
3500 (1 sec)
dv/dt Max. critical rate of rise
500
V/µs
V
50 Hz, circuit to base, all terminals
shorted
T
J
= 125
o
C, linear to 0.67 V
DRM
,
15
mA
T
J
= 125
o
C, gate open circuit
IRK. 26
Units
Conditions
(5) Available with dv/dt = 1000V/µs, to complete code add S90 i.e. IRKT26/16AS90.
Thermal and Mechanical Specifications
Parameters
T
J
T
stg
Junction operating
temperature range
Storage temp. range
IRK.26
- 40 to 125
- 40 to 125
Units
Conditions
°C
R
thJC
Max. internal thermal
resistance, junction
to case
R
thCS
Typical thermal resistance
case to heatsink
T
Mounting torque ± 10%
to heatsink
busbar
wt
Approximate weight
Case style
0.1
5
Nm
3
110 (4)
TO-240AA
gr (oz)
JEDEC
0.31
K/W
Mounting surface flat, smooth and greased
A mounting compound is recommended
and the torque should be rechecked after
a period of 3 hours to allow for the
spread of the compound
Per module, DC operation
∆R
Conduction (per Junction)
Devices
IRK.26
(The following table shows the increment of thermal resistance R
thJC
when devices operate at different conduction angles than DC)
Sine half wave conduction
180
0.23
o
Rect. wave conduction
30
0.73
o
120
0.27
o
90
0.34
o
60
0.48
o
180
0.17
o
120
o
0.28
90
o
0.36
60
o
0.49
30
o
0.73
Units
°C/W
www.irf.com
3
IRK.26 Series
Bulletin I27130 rev. G 10/02
Ordering Information Table
Device Code
IRK.27 types
With no auxiliary cathode
IRK
1
1
2
3
4
5
6
-
-
-
-
-
-
T
2
26
3
/
16
4
A
5
S90
6
Module type
Circuit configuration (See Circuit Configuration table below)
Current code
* *
Voltage code (See Voltage Ratings table)
A : Gen V
dv/dt code:
S90 = dv/dt 1000 V/µs
No letter = dv/dt 500 Vµs
e.g. : IRKT27/16A etc.
* *
Available with no auxiliary cathode.
To specify change:
26 to 27
Outline Table
Dimensions are in millimeters and [inches]
IRKT
(1)
~
IRKH
(1)
~
IRKL
(1)
~
IRKN
(1)
-
+
(2)
+
(2)
+
(2)
(2)
+
-
(3)
G1 K1
(4) (5)
K2 G2
(7) (6)
G1 K1
(4) (5)
-
(3)
-
(3)
K2 G2
(7) (6)
(3)
+
G1 K1
(4) (5)
NOTE: To order the Optional Hardware see Bulletin I27900
4
www.irf.com
IRK.26 Series
Bulletin I27130 rev. G 10/02
Maximum Allowable Case Temperature (°C)
Maximum Allowable Case Temperature (°C)
130
IRK.26.. Series
R
thJC
(DC) = 0.62 K/W
130
IRK.26.. Series
R
thJC
(DC) = 0.62 K/W
120
120
110
Conduction Angle
110
Conduction Period
100
30°
100
30°
60°
90°
120°
180°
DC
40
50
60°
90°
90
120°
180°
90
80
0
5
10
15
20
25
30
80
0
10
20
30
Average On-state Current (A)
Average On-state Current (A)
Fig. 1 - Current Ratings Characteristics
Fig. 2 - Current Ratings Characteristics
40
180°
120°
90°
60°
30°
RMS Limit
Maximum Average On-state Power Loss (W)
Maximum Average On-state Power Loss (W)
50
70
60
50
40
30
20
10
0
30
DC
180°
120°
90°
60°
30°
RMS Limit
20
Conduction Angle
Conduction Period
10
IRK.26.. Series
Per Junction
T
J
= 125°C
0
5
10
15
20
25
30
IRK.26.. Series
Per Junction
T
J
= 125°C
0
10
20
30
40
50
0
Average On-state Current (A)
Average On-state Current (A)
Fig. 3 - On-state Power Loss Characteristics
400
400
Fig. 4 - On-state Power Loss Characteristics
Peak Half Sine Wave On-state Current (A)
350
At Any Rated Load Condition And With
Rated V
RRM
Applied Following Surge.
Initial T
J
= 125°C
@ 60 Hz 0.0083 s
@ 50 Hz 0.0100 s
Peak Half Sine Wave On-state Current (A)
350
300
300
Maximum Non Repetitive Surge Current
Versus Pulse Train Duration. Control
Of Conduction May Not Be Maintained.
Initial T
J
= 125°C
No Voltage Reapplied
Rated V
RRM
Reapplied
250
250
200
IRK.26.. Series
Per Junction
150
1
10
100
200
IRK.26.. Series
Per Junction
150
0.01
0.1
Pulse Train Duration (s)
1
Number Of Equal Amplitude Half Cycle Current Pulses (N)
Fig. 5 - Maximum Non-Repetitive Surge Current
Fig. 6 - Maximum Non-Repetitive Surge Current
www.irf.com
5