• Transformer Coupled Across 70 ohms, Measured on Stub:
• BU-63147/157XX-XX0
• BU-63147X3-XX2 (Note 9)
Output Noise, Differential (Direct Coupled)
Output Offset Voltage, Transformer Coupled Across 70 ohms
Rise/Fall Time
• BU-63147/157X3
• BU-63147X4
LOGIC
V
IH
V
IL
I
IH
Tx
Data In
, Tx
Inhibit
, Rx
Strobe
I
IL
Tx
Data In
, Tx
Inhibit
, Rx
Strobe
V
OH
(Vcc=4.75V,I
OH
=max)
V
OL
(Vcc=4.75V,I
OH
=max)
I
OL
I
OH
6
18
20
-250
100
200
7
20
22
150
150
250
9
27
27
10
250
300
300
Vp-p
Vp-p
Vp-p
mVp-p, diff
mVp-p, diff
ns
ns
2.0
20
-100
2.4
0.4
3.4
-3.4
0.8
100
-20
V
V
µA
µA
V
V
mA
mA
POWER SUPPLY REQUIREMENTS
Voltages/Tolerances
• +5V
Current Drain (Total Hybrid)
BU-63147/157/XX-XX0
• Idle (Both Channels)
• 25% Transmitter Duty Cycle (One Channel)
• 50% Transmitter Duty Cycle (One Channel)
• 100% Transmitter Duty Cycle (One Channel)
BU-63147/X3-XX2
• Idle (Both Channels)
• 25% Transmitter Duty Cycle (One Channel)
• 50% Transmitter Duty Cycle (One Channel)
• 100% Transmitter Duty Cycle (One Channel)
4.75
5.0
80
199
286
455
80
210
308
500
5.25
100
229
348
535
100
240
370
580
V
mA
mA
mA
mA
mA
mA
mA
mA
Data Device Corporation
www.ddc-web.com
3
BU-63147
R-10/14-0
TABLE 1. BU-63147/157 SPECIFICATIONS (CONT.)
PARAMETER
POWER DISSIPATION (NOTE 10)
Total Hybrid
BU-63147/157/XX-XX0
• Idle (Both Channels)
• 25% Transmitter Duty Cycle (One Channel)
• 50% Transmitter Duty Cycle (One Channel)
• 100% Transmitter Duty Cycle (One Channel)
BU-63147/X3-XX2
• Idle (Both Channels)
• 25% Transmitter Duty Cycle (One Channel)
• 50% Transmitter Duty Cycle (One Channel)
• 100% Transmitter Duty Cycle (One Channel)
Hottest Die
BU-63147/157/XX-XX0
• Idle (One Channel)
• 25% Transmitter Duty Cycle (One Channel)
• 50% Transmitter Duty Cycle (One Channel)
• 100% Transmitter Duty Cycle (One Channel)
BU-63147/X3-XX2
• Idle (One Channel)
• 25% Transmitter Duty Cycle (One Channel)
• 50% Transmitter Duty Cycle (One Channel)
• 100% Transmitter Duty Cycle (One Channel)
THERMAL
• Thermal Resistance, Junction-to-Case, Hottest Die (θ
JC
)
• Operating Junction Temperature
• Storage Temperature
• Lead Temperature (soldering, 10 sec.)
PHYSICAL CHARACTERISTICS
Size
36-Pin DIP
36-Lead Flat pack
Weight
MIN
TYP
MAX
UNITS
0.4
0.65
0.73
0.88
0.4
0.7
0.84
1.1
0.2
0.43
0.59
0.78
0.2
0.48
0.7
1.00
0.5
0.8
1.04
1.28
0.5
0.85
1.15
1.50
0.25
0.6
0.84
1.13
0.25
0.65
0.95
1.35
12
150
150
+300
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
°C/W
°C
°C
°C
-55
-65
1.900 x .800 x .205
(48.26 x 20.32 x 5.21)
1.900 x .800 x .200
(48.26 x 20.32 x 5.08)
0.6
(17)
in.
(mm)
in.
(mm)
oz
(g)
Notes:
Notes 1 through 6 are applicable to the Receiver Differential Resistance and Differential Capacitance specifications:
(1) Specifications include both transmitter and receiver (assumed tied together externally).
(2) Impedance parameters are specified directly between pins TX/RX A(B) and TX/RX A(B) hybrid.
(3) It is assumed that all power and ground inputs to the hybrid are connected and that the hybrid case is connected to ground for the impedance measurement.
(4) The specifications are applicable for both unpowered and powered conditions.
(5) The specifications assume a 2 volt rms balanced, differential, sinusoidal input. The applicable frequency range is 75 kHz to 1 MHz.
(6) Minimum resistance and maximum capacitance parameters are guaranteed over the operating range, but are not tested.
(7) The Threshold Level, as referred to in this specification, is meant to be the maximum peak-to-peak voltage (measured on the data bus) that can be applied to the
receiver's input without causing the output to change from the OFF state.
(8) Assumes a common mode voltage within the frequency range of dc to 2 MHz, applied to pins of the isolation transformer on the stub side (either direct or transformer
coupled), and referenced to transceiver ground. Transformer must be a DDC recommended transformer or other transformer that provides an equivalent minimum
CMRR.
(9) MIL-STD-1760 requires minimum output voltage of 20 Vp-p on the stub connection. The -XX2 option is
not
available for the BU-63147X4 or BU-63157 versions.
(10) Power dissipation specifications assume a transformer coupled configuration, with external dissipation (while transmitting) of 0.14 watts for the active isolation trans-
former, 0.08 watts for the active coupling transformer, 0.45 watts for each of the two bus isolation resistors, and 0.15 watts for each of the two bus termination resistors.
(11) Assuming the use of isolation transformers with the turns ratios shown in Figure 3 and in the absence of common mode signal on the 1553 stub, this equates to a
nominal stub voltage of 38 Volts
PK-to-PK
transformer-coupled, or 53 Volts
PK-to-PK
direct-coupled.
Data Device Corporation
www.ddc-web.com
4
BU-63147
R-10/14-0
TABLE 2. BU-63157 RADIATION SPECIFICATIONS*
PART NUMBER
BU-63157X3
TOTAL DOSE
100 KRAD
SINGLE EVENT
LATCHUP
IMMUNE
INTRODUCTION
The BU-63147/157 is a dual redundant transmitter and receiver
packaged in a 36-pin DDIP or flat pack. It is directly compatible to
Harris 15530 encoder/decoder and has internal (factory preset)
threshold levels. The dual transceiver only requires +5V power
and conforms to MIL-STD-1553A and 1553B. For McAir compat-
ibility, versions are available with rise/fall times of 200 to 300
nsec.
Figure 3 illustrates the connection between a BU-63147/157
transceiver and a MIL-STD-1553 Data Bus. After transformer
isolating the transceiver, it can be either direct coupled (short
stub) or transformer coupled (long stub) to the Data Bus.
*Note: Radiation parameters specified on this data sheet are derived from initial
qualification testing by DDC and published data from ASIC manufacturers. These
devices have not been evaluated for compliance to the RHA requirements stipu-
lated in MIL-PRF-38534, Appendix G.
TABLE 3. HIGH RELIABILITY SCREENING OPTIONS
FOR BU-63157
ELEMENT EVALUATION
Visual Inspection:
Integrated Circuits
Transistor & Diodes
Passive Components
METHOD
TRANSMIT OPERATING MODE
MIL-STD-883, Method 2010 Condition A
MIL-STD-750, Method 2072 and 2073
MIL-STD-883, Method 2032 Class S
SEM Analysis for Integrated MIL-STD-883, Method 2018
Circuits
Element Evaluation:
Visual, Electrical, Wire
Bondability, 24-Hour
Stabilization Bake, 10
Temperature Cycles,
5000 g’s constant accelera-
tion, 240-Hour Powered
Burn-In and 1000-Hour Life
Test (Burn-In and 1000-
Hour Life Test are Only
Required for Active
Components.)
ASSEMBLY & TEST
Particle Impact Noise
Detection (PIND)
320-Hour Burn-In
(Standard on this device)
100% Non-Destructive
Wirebond Pull
(Standard on this device)
Radiographic (X-Ray)
Analysis
QCI TESTING
Extended Temperature
Cycling:
20 Cycles Including
Radiographic (X-Ray)
Testing
Moisture Content Limit of
5000 PPM
MIL-STD-883, Method 2020
Condition A
MIL-STD-883, Method 1015
The transmitter section accepts encoded TTL data and converts
it to phase-modulated bipolar form using a waveshaping network
and driver circuits. The driver outputs TX DATA OUT and TX DATA
OUT are transformer coupled to the Data Bus.
The transmitter output terminals can be put into a high imped-
ance state by setting INHIBIT high, or setting TX DATA IN and TX
DATA IN to the same logic level. The operating modes are shown
in TABLE 4.
The transceivers are able to operate in a “wraparound” mode.
This allows output data to be monitored by the receiver section
and returned to the decoder where it is checked for errors.
MIL-PRF-38534
TABLE 4. TRANSMIT OPERATING MODE
TX DATA IN
X
0
0
MIL-STD-883, Method 2023
1
1
MIL-STD-883, Method 2012
TX DATA IN
X
0
1
0
1
TX INHIBIT
H
X
L
L
X
DRIVER OUTPUT
OFF (NOTE)
OFF
TX DATA OUT ON,
TX DATA OUT OFF
TX DATA OUT ON,
TX DATA OUT OFF
OFF
NOTE: DRIVER OUTPUT terminals are in the high impedance mode during
[i=s]This post was last edited by jinglixixi on 2020-10-28 08:40[/i]My first encounter with the Lingdong development board was with the MM32L073, and it was a great honor to meet the MM32F0133 again t...
* Get the SDK of esp32-s2-kaluga-1 ```bash git clone https://github.com/espressif/esp-dev-kits ``` * Get lvgl driver support for ESP32 ```bash git clone https://github.com/lvgl/lvgl_esp32_drivers ``` ...
[i=s]This post was last edited by Jacktang on 2020-7-14 15:55[/i]Take a two-port network as an example, such as a single transmission line, there are four S parameters: S11, S12, S21, S22. For a recip...
1. OSDFPGA configures a dedicated 8-bit register to control the indicator light on and off. The access address is 90080017h. It can be seen from the circuit diagram that the low level lights up.2. Whe...
[i=s] This post was last edited by Mengxi Kaiwu on 2022-4-3 10:09[/i]A speaker is added to the back of the RVB2601 development board to provide users with a way to get started with audio. The MCU send...
There are four pins on the bridge rectifier, two of which are the input terminals of the AC power supply, represented by "AC", and the other two pins are the DC output terminals, represented by "+" ...[Details]
#include
/*Two channels of data acquisition, one of which is very stable, with one or two jumps, but the other channel jumps a lot.
My processing method is: 1. Connect all the extra channels, sort ...[Details]
Investment in the medical device industry has been on the rise in recent years. In the past two years, venture capital for medical devices has almost doubled, reaching $4 billion in 2007. From a glob...[Details]
The reasons for the failure of users using flammable gas detectors are very complicated. Generally speaking, the main reasons are that users do not understand the performance of the dete...[Details]
Static combustion There were two Model S thermal runaway accidents in China and the United States after they were parked. These two accidents have some commonalities. Based on the US NTBS and domesti...[Details]
There are many types of human-computer dialogue interfaces, such as display, LED, LCD and LCD with touch screen. Among them, LCD with touch screen is a new technology that has just developed in recent...[Details]
Which one has higher precision, servo motor or stepper motor
Both servo motors and stepper motors can achieve high precision requirements, but servo motors usually have higher precision than s...[Details]
On August 25,
the 2022 Intel China Data Center Partner Technology Summit "Core Startup, Digital Intelligence, and a Better Future" was held in Hangzhou.
At the summit, Wang Fei, general man...[Details]
Applications of stepper motors
(I) Selection of stepper motors
Stepper motors are composed of three major elements: step angle (involving the number of phases), static torqu...[Details]
You can find it almost everywhere you go, in your neighbor's driveway, in the supermarket, or increasingly on the highway between home and work. Not too complicated or expensive, but widely used in ou...[Details]
Advanced packaging of power modules is very important. Packaging optimization is one of the solutions to improve performance. WBG devices have higher power density than Si devices and require bette...[Details]
The new energy vehicle and power battery industry chain experienced many ups and downs in 2019. The decline of fiscal subsidies, industry reshuffle, safety and cost issues reflected the cruel winter ...[Details]
Apple today pushed the watchOS 8.3 Developer Preview Beta 3 update (internal version number: 19S5044c) to Apple Watch users. This update was released one week after the last one. Users can d...[Details]
This paper comprehensively studies the key issues of simulation modeling such as boundary condition setting, thermal resistance calculation, heat load analysis and heat sink, and combines it with lab...[Details]
On August 25, a poster about Hongmeng OS and Geely on Weibo attracted attention. It is understood that the words "HarmonyOS" and "Welcome to Hongmeng" were marked on the poster, and Geely Boyue Pro a...[Details]