D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
HGTG5N120BND, HGTP5N120BND
Data Sheet
May 2003
21A, 1200V, NPT Series N-Channel IGBTs
with Anti-Parallel Hyperfast Diodes
The HGTG5N120BND and HGTP5N120BND are
Non-
Punch Through
(NPT) IGBT designs. They are new
members of the MOS gated high voltage switching IGBT
family. IGBTs combine the best features of MOSFETs and
bipolar transistors. This device has the high input impedance
of a MOSFET and the low on-state conduction loss of a
bipolar transistor. The IGBT used is the development type
TA49308. The Diode used is the development type TA49058
(Part number RHRD6120).
The IGBT is ideal for many high voltage switching
applications operating at moderate frequencies where low
conduction losses are essential, such as: AC and DC motor
controls, power supplies and drivers for solenoids, relays
and contactors.
Formerly Developmental Type TA49306.
Features
• 21A, 1200V, T
C
= 25
o
C
• 1200V Switching SOA Capability
• Typical Fall Time . . . . . . . . . . . . . . . . 175ns at T
J
= 150
o
C
• Short Circuit Rating
• Low Conduction Loss
•
Thermal Impedance
SPICE Model
Temperature Compensating
SABER™ Model
www.fairchildsemi.com
• Related Literature
- TB334 “Guidelines for Soldering Surface Mount
Components to PC Boards”
Packaging
JEDEC STYLE TO-247
E
C
G
Ordering Information
PART NUMBER
HGTG5N120BND
HGTP5N120BND
PACKAGE
TO-247
TO-220AB
BRAND
5N120BND
5N120BND
COLLECTOR
(FLANGE)
NOTE: When ordering, use the entire part number. i.e.,
HGTG5N120BND.
Symbol
C
JEDEC TO-220AB (ALTERNATE VERSION)
COLLECTOR
(FLANGE)
G
G
C
E
E
FAIRCHILD SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S. PATENTS
4,364,073
4,598,461
4,682,195
4,803,533
4,888,627
4,417,385
4,605,948
4,684,413
4,809,045
4,890,143
4,430,792
4,620,211
4,694,313
4,809,047
4,901,127
4,443,931
4,631,564
4,717,679
4,810,665
4,904,609
4,466,176
4,639,754
4,743,952
4,823,176
4,933,740
4,516,143
4,639,762
4,783,690
4,837,606
4,963,951
4,532,534
4,641,162
4,794,432
4,860,080
4,969,027
4,587,713
4,644,637
4,801,986
4,883,767
©2003 Fairchild Semiconductor Corporation
HGTG5N120BND, HGTP5N120BND, Rev. B1
HGTG5N120BND, HGTP5N120BND
Absolute Maximum Ratings
T
C
= 25
o
C, Unless Otherwise Specified
HGTG5N120BND
HGTP5N120BND
Collector to Emitter Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .BV
CES
Collector Current Continuous
At T
C
= 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
C25
At T
C
= 110
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
C110
Collector Current Pulsed (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
CM
Gate to Emitter Voltage Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
GES
Gate to Emitter Voltage Pulsed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
GEM
Switching Safe Operating Area at T
J
= 150
o
C (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . SSOA
Power Dissipation Total at T
C
= 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
D
Power Dissipation Derating T
C
> 25
o
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . T
J
, T
STG
Maximum Lead Temperature for Soldering
Leads at 0.063in (1.6mm) from case for 10s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
L
Package Body for 10s, see Tech Brief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .T
pkg
Short Circuit Withstand Time (Note 2) at V
GE
= 15V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t
SC
Short Circuit Withstand Time (Note 2) at V
GE
= 12V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .t
SC
21
10
40
±20
±30
30A at 1200V
167
1.33
-55 to 150
300
260
8
15
W
W/
o
C
o
C
o
C
o
C
UNITS
V
A
A
A
V
V
1200
µs
µs
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Pulse width limited by maximum junction temperature.
2. V
CE(PK)
= 840V, T
J
= 125
o
C, R
G
= 25Ω.
Electrical Specifications
PARAMETER
T
C
= 25
o
C, Unless Otherwise Specified
SYMBOL
BV
CES
I
CES
TEST CONDITIONS
I
C
= 250µA, V
GE
= 0V
V
CE
= 1200V
T
C
= 25
o
C
T
C
= 125
o
C
T
C
= 150
o
C
MIN
1200
-
-
-
-
-
6.0
-
30
-
V
GE
= 15V
V
GE
= 20V
-
-
-
-
-
-
-
-
TYP
-
-
100
-
2.45
3.7
6.8
-
-
10.5
53
60
22
15
160
130
450
390
MAX
-
250
-
1.5
2.7
4.2
-
±250
-
-
65
72
25
20
180
160
600
450
UNITS
V
µA
µA
mA
V
V
V
nA
A
V
nC
nC
ns
ns
ns
ns
µJ
µJ
Collector to Emitter Breakdown Voltage
Collector to Emitter Leakage Current
Collector to Emitter Saturation Voltage
V
CE(SAT)
I
C
= 5A,
V
GE
= 15V
T
C
= 25
o
C
T
C
= 150
o
C
Gate to Emitter Threshold Voltage
Gate to Emitter Leakage Current
Switching SOA
Gate to Emitter Plateau Voltage
On-State Gate Charge
V
GE(TH)
I
GES
SSOA
V
GEP
Q
G(ON)
I
C
= 45µA, V
CE
= V
GE
V
GE
=
±20V
T
J
= 150
o
C, R
G
= 25Ω, V
GE
= 15V,
L = 5mH, V
CE(PK)
= 1200V
I
C
= 5A, V
CE
= 600V
I
C
= 5A,
V
CE
= 600V
Current Turn-On Delay Time
Current Rise Time
Current Turn-Off Delay Time
Current Fall Time
Turn-On Energy
Turn-Off Energy (Note 3)
t
d(ON)I
t
rI
t
d(OFF)I
t
fI
E
ON
E
OFF
IGBT and Diode at T
J
= 25
o
C,
I
CE
= 5A,
V
CE
= 960V,
V
GE
= 15V,
R
G
= 25Ω,
L = 5mH,
Test Circuit (Figure 20)
©2003 Fairchild Semiconductor Corporation
HGTG5N120BND, HGTP5N120BND, Rev. B1
HGTG5N120BND, HGTP5N120BND
Electrical Specifications
PARAMETER
Current Turn-On Delay Time
Current Rise Time
Current Turn-Off Delay Time
Current Fall Time
Turn-On Energy
Turn-Off Energy (Note 3)
Diode Forward Voltage
Diode Reverse Recovery Time
T
C
= 25
o
C, Unless Otherwise Specified
(Continued)
SYMBOL
t
d(ON)I
t
rI
t
d(OFF)I
t
fI
E
ON
E
OFF
V
EC
t
rr
I
EC
= 10A
I
EC
= 7A, dl
EC
/dt = 200A/µs
I
EC
= 1A, dl
EC
/dt = 200A/µs
Thermal Resistance Junction To Case
R
θJC
IGBT
Diode
NOTE:
3. Turn-Off Energy Loss (E
OFF
) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and
ending at the point where the collector current equals zero (I
CE
= 0A). All devices were tested per JEDEC Standard No. 24-1 Method for
Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.
TEST CONDITIONS
IGBT and Diode at T
J
= 150
o
C,
I
CE
= 5A,
V
CE
= 960V,
V
GE
= 15V,
R
G
= 25Ω,
L = 5mH,
Test Circuit (Figure 20)
MIN
-
-
-
-
-
-
-
-
-
-
-
TYP
20
15
182
175
1000
560
2.70
50
30
-
-
MAX
25
20
280
200
1300
800
3.50
65
40
0.75
1.75
UNITS
ns
ns
ns
ns
µJ
µJ
V
ns
ns
o
C/W
o
C/W
Typical Performance Curves
25
I
CE
, DC COLLECTOR CURRENT (A)
Unless Otherwise Specified
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
35
30
25
20
15
10
5
0
V
GE
= 15V
20
T
J
= 150
o
C, R
G
= 25Ω, V
GE
= 15V, L = 5mH
15
10
5
0
25
50
75
100
125
150
0
200
400
600
800
1000
1200
1400
T
C
, CASE TEMPERATURE (
o
C)
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
FIGURE 1. DC COLLECTOR CURRENT vs CASE
TEMPERATURE
FIGURE 2. MINIMUM SWITCHING SAFE OPERATING AREA
©2003 Fairchild Semiconductor Corporation
HGTG5N120BND, HGTP5N120BND, Rev. B1
HGTG5N120BND, HGTP5N120BND
Typical Performance Curves
Unless Otherwise Specified
(Continued)
t
SC
, SHORT CIRCUIT WITHSTAND TIME (µs)
f
MAX
, OPERATING FREQUENCY (kHz)
200
100
50
T
J
= 150
o
C, R
G
= 25Ω, L = 5mH, V
CE
= 960V
T
C
= 75
o
C, V
GE
= 15V T
C
V
GE
IDEAL DIODE
75
o
C 15V
75
o
C 12V
V
CE
= 840V, R
G
= 25Ω, T
J
= 125
o
C
35
I
SC
30
25
20
t
SC
15
10
30
20
60
50
40
70
10
f
MAX1
= 0.05 / (t
d(OFF)I
+ t
d(ON)I
)
f
MAX2
= (P
D
- P
C
) / (E
ON
+ E
OFF
)
P
C
= CONDUCTION DISSIPATION
(DUTY FACTOR = 50%)
R
ØJC
= 0.75
o
C/W, SEE NOTES
2
T
C
V
GE
110
o
C 15V
110
o
C 12V
10
6
8
4
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
10
11
12
13
14
15
V
GE
, GATE TO EMITTER VOLTAGE (V)
FIGURE 3. OPERATING FREQUENCY vs COLLECTOR TO
EMITTER CURRENT
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 4. SHORT CIRCUIT WITHSTAND TIME
30
25
20
T
C
= 25
o
C
15
10
5
0
T
C
= 150
o
C
DUTY CYCLE <0.5%, V
GE
= 12V
PULSE DURATION = 250µs
T
C
= -55
o
C
30
25
T
C
= -55
o
C
20
15
10
5
0
T
C
= 25
o
C
T
C
= 150
o
C
DUTY CYCLE <0.5%, V
GE
=
15V
PULSE DURATION = 250µs
0
2
4
6
8
10
0
2
4
6
8
10
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
V
CE
, COLLECTOR TO EMITTER VOLTAGE (V)
FIGURE 5. COLLECTOR TO EMITTER ON-STATE VOLTAGE
FIGURE 6. COLLECTOR TO EMITTER ON-STATE VOLTAGE
3000
E
OFF
, TURN-OFF ENERGY LOSS (µJ)
R
G
= 25Ω, L = 5mH, V
CE
= 960V
E
ON
, TURN-ON ENERGY LOSS (µJ)
2500
T
J
= 150
o
C, V
GE
= 12V, V
GE
= 15V
2000
900
R
G
= 25Ω, L = 5mH, V
CE
= 960V
800
700
600
500
400
T
J
= 25
o
C, V
GE
= 12V OR 15V
300
200
T
J
= 150
o
C, V
GE
= 12V OR 15V
1500
1000
500
T
J
= 25
o
C, V
GE
= 12V, V
GE
= 15V
0
2
3
4
5
6
7
8
9
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
10
2
3
4
5
6
7
8
9
10
I
CE
, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 7. TURN-ON ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
FIGURE 8. TURN-OFF ENERGY LOSS vs COLLECTOR TO
EMITTER CURRENT
©2003 Fairchild Semiconductor Corporation
HGTG5N120BND, HGTP5N120BND, Rev. B1
I
SC
, PEAK SHORT CIRCUIT CURRENT (A)
40
80