SMPS IGBT
PD - 95558
IRGP20B60PDPbF
WARP2 SERIES IGBT WITH
ULTRAFAST SOFT RECOVERY DIODE
Applications
Telecom and Server SMPS
PFC and ZVS SMPS Circuits
Uninterruptable Power Supplies
Consumer Electronics Power Supplies
Lead-Free
NPT Technology, Positive Temperature Coefficient
Lower V
CE
(SAT)
Lower Parasitic Capacitances
Minimal Tail Current
HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode
Tighter Distribution of Parameters
Higher Reliability
C
•
•
•
•
•
•
•
•
•
•
•
•
V
CES
= 600V
V
CE(on)
typ. = 2.05V
@ V
GE
= 15V I
C
= 13.0A
G
E
Features
n-channel
Equivalent MOSFET
Parameters
R
CE(on)
typ. = 158mΩ
I
D
(FET equivalent) = 20A
Benefits
•
Parallel Operation for Higher Current Applications
•
Lower Conduction Losses and Switching Losses
•
Higher Switching Frequency up to 150kHz
E
C
G
TO-247AC
Absolute Maximum Ratings
Parameter
V
CES
I
C
@ T
C
= 25°C
I
C
@ T
C
= 100°C
I
CM
I
LM
I
F
@ T
C
= 25°C
I
F
@ T
C
= 100°C
I
FRM
V
GE
P
D
@ T
C
= 25°C
P
D
@ T
C
= 100°C
T
J
T
STG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulse Collector Current (Ref. Fig. C.T.4)
Clamped Inductive Load Current
Max.
600
40
22
80
80
31
12
42
±20
220
86
-55 to +150
Units
V
d
A
Diode Continous Forward Current
Diode Continous Forward Current
Maximum Repetitive Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw
e
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
R
θJC
(IGBT)
R
θJC
(Diode)
R
θCS
R
θJA
Thermal Resistance Junction-to-Case-(each IGBT)
Thermal Resistance Junction-to-Case-(each Diode)
Thermal Resistance, Case-to-Sink (flat, greased surface)
Thermal Resistance, Junction-to-Ambient (typical socket mount)
Weight
Min.
–––
–––
–––
–––
–––
Typ.
–––
–––
0.24
–––
6 (0.21)
Max.
0.58
2.5
–––
40
–––
Units
°C/W
g (oz)
7/27/04
IRGP20B60PDPbF
V
(BR)CES
∆V
(BR)CES
/∆T
J
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
Min.
600
—
—
—
—
—
—
Typ.
—
0.32
4.3
2.05
2.50
2.65
3.30
4.0
-11
19
1.0
0.1
1.4
1.3
—
Max. Units
—
—
—
2.35
2.80
3.00
3.70
5.0
—
—
250
—
1.7
1.6
±100
nA
V
V
V
Ω
Conditions
V
GE
= 0V, I
C
= 500µA
1MHz, Open Collector
I
C
= 13A, V
GE
= 15V
I
C
= 20A, V
GE
= 15V
I
C
= 13A, V
GE
= 15V, T
J
= 125°C
I
C
= 20A, V
GE
= 15V, T
J
= 125°C
I
C
= 250µA
Ref.Fig
V/°C V
GE
= 0V, I
C
= 1mA (25°C-125°C)
4, 5,6,8,9
R
G
V
CE(on)
Internal Gate Resistance
Collector-to-Emitter Saturation Voltage
V
GE(th)
∆V
GE(th)
/∆TJ
Gate Threshold Voltage
Threshold Voltage temp. coefficient
Forward Transconductance
Collector-to-Emitter Leakage Current
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
3.0
—
—
—
—
—
—
—
7,8,9
gfe
I
CES
V
FM
I
GES
mV/°C V
CE
= V
GE
, I
C
= 1.0mA
S V
CE
= 50V, I
C
= 40A, PW = 80µs
µA
mA
V
V
GE
= 0V, V
CE
= 600V
V
GE
= 0V, V
CE
= 600V, T
J
= 125°C
I
F
= 12A, V
GE
= 0V
I
F
= 12A, V
GE
= 0V, T
J
= 125°C
V
GE
= ±20V, V
CE
= 0V
10
Switching Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter
Qg
Q
gc
Q
ge
E
on
E
off
E
total
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
total
t
d(on)
t
r
t
d(off)
t
f
C
ies
C
oes
C
res
C
oes
eff.
C
oes
eff. (ER)
RBSOA
t
rr
Q
rr
I
rr
Total Gate Charge (turn-on)
Gate-to-Collector Charge (turn-on)
Gate-to-Emitter Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance (Time Related)
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
68
24
10
95
100
195
20
5.0
115
6.0
165
150
315
19
6.0
125
13
1570
130
20
94
76
Max. Units
102
36
15
140
145
285
26
7.0
135
8.0
215
195
410
25
8.0
140
17
—
—
—
—
—
pF
V
GE
= 0V
V
CC
= 30V
ns
µJ
ns
µJ
nC
I
C
= 13A
V
CC
= 400V
V
GE
= 15V
Conditions
Ref.Fig
17
CT1
I
C
= 13A, V
CC
= 390V
V
GE
= +15V, R
G
= 10Ω, L = 200µH
T
J
= 25°C
I
C
= 13A, V
CC
= 390V
V
GE
= +15V, R
G
= 10Ω, L = 200µH
T
J
= 25°C
CT3
f
CT3
fÃ
f
I
C
= 13A, V
CC
= 390V
V
GE
= +15V, R
G
= 10Ω, L = 200µH
T
J
= 125°C
I
C
= 13A, V
CC
= 390V
V
GE
= +15V, R
G
= 10Ω, L = 200µH
T
J
= 125°C
CT3
11,13
WF1,WF2
CT3
12,14
WF1,WF2
fÃ
16
Effective Output Capacitance (Energy Related)
Reverse Bias Safe Operating Area
Diode Reverse Recovery Time
Diode Reverse Recovery Charge
Peak Reverse Recovery Current
g
—
g
—
—
f = 1Mhz
V
GE
= 0V, V
CE
= 0V to 480V
T
J
= 150°C, I
C
= 80A
15
3
CT2
FULL SQUARE
—
—
—
—
—
—
42
80
80
220
3.5
5.6
60
120
180
600
6.0
10
A
nC
ns
V
CC
= 480V, Vp =600V
Rg = 22Ω, V
GE
= +15V to 0V
T
J
= 25°C
T
J
= 125°C
T
J
= 25°C
T
J
= 125°C
T
J
= 25°C
T
J
= 125°C
I
F
= 12A, V
R
= 200V,
di/dt = 200A/µs
I
F
= 12A, V
R
= 200V,
di/dt = 200A/µs
I
F
= 12A, V
R
= 200V,
di/dt = 200A/µs
19
21
19,20,21,22
CT5
Notes:
R
CE(on)
typ. = equivalent on-resistance = V
CE(on)
typ. / I
C
, where V
CE(on)
typ. = 2.05V and I
C
= 13A.
I
D
(FET Equivalent) is the equivalent MOSFET I
D
rating @ 25°C for
applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions.
V
CC
= 80% (V
CES
), V
GE
= 15V, L = 28µH, R
G
= 22Ω.
Pulse width limited by max. junction temperature.
Energy losses include "tail" and diode reverse recovery. Data generated with use of Diode 8ETH06.
C
oes
eff. is a fixed capacitance that gives the same charging time as C
oes
while V
CE
is rising from 0 to 80% V
CES
.
C
oes
eff.(ER) is a fixed capacitance that stores the same energy as C
oes
while V
CE
is rising from 0 to 80% V
CES
.
2
www.irf.com
IRGP20B60PDPbF
45
40
35
30
IC (A)
200
250
25
20
15
10
5
0
0
20
40
60
80
100 120 140 160
T C (°C)
Ptot (W)
150
100
50
0
0
20
40
60
80
100 120 140 160
T C (°C)
Fig. 1
- Maximum DC Collector Current vs.
Case Temperature
100
Fig. 2
- Power Dissipation vs. Case
Temperature
40
35
30
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
10
25
ICE (A)
1
0
10
100
VCE (V)
1000
IC A)
20
15
10
5
0
0
1
2
3
VCE (V)
4
5
6
Fig. 3
- Reverse Bias SOA
T
J
= 150°C; V
GE
=15V
40
35
30
25
ICE (A)
40
Fig. 4
- Typ. IGBT Output Characteristics
T
J
= -40°C; tp = 80µs
35
30
25
ICE (A)
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
20
15
10
5
0
0
1
2
3
VCE (V)
4
5
6
20
15
10
5
0
0
1
2
3
VCE (V)
4
5
6
Fig. 5
- Typ. IGBT Output Characteristics
T
J
= 25°C; tp = 80µs
Fig. 6
- Typ. IGBT Output Characteristics
T
J
= 125°C; tp = 80µs
www.irf.com
3
IRGP20B60PDPbF
450
400
350
300
ICE (A)
10
9
8
T J = 25°C
TJ = 125°C
VCE (V)
7
6
5
4
3
2
1
0
ICE = 20A
ICE = 13A
ICE = 8.0A
250
200
150
100
50
0
0
5
10
VGE (V)
15
20
0
5
10
VGE (V)
15
20
Fig. 7
- Typ. Transfer Characteristics
V
CE
= 50V; tp = 10µs
10
9
8
7
VCE (V)
( )
A
100
Fig. 8
- Typical V
CE
vs. V
GE
T
J
= 25°C
ICE = 20A
ICE = 13A
ICE = 8.0A
6
5
4
3
2
1
0
0
5
10
In ta ta e u F r adC r e t - I
s n n o s ow r ur n
F
T = 150°C
J
10
T = 125°C
J
T =
J
25°C
15
20
1
0.4
0.8
1.2
1.6
2.0
2.4
VGE (V)
Forward Voltage Drop - V
FM
(V)
Fig. 9
- Typical V
CE
vs. V
GE
T
J
= 125°C
350
300
Swiching Time (ns)
Fig. 10
- Typ. Diode Forward Characteristics
tp = 80µs
1000
250
Energy (µJ)
EON
100
tdOFF
200
150
100
50
0
0
5
10
15
IC (A)
20
25
EOFF
tdON
10
tF
tR
1
0
5
10
15
20
25
IC (A)
Fig. 11
- Typ. Energy Loss vs. I
C
T
J
= 125°C; L = 200µH; V
CE
= 390V, R
G
= 10Ω; V
GE
= 15V.
Diode clamp used: 8ETH06 (See C.T.3)
Fig. 12
- Typ. Switching Time vs. I
C
T
J
= 125°C; L = 200µH; V
CE
= 390V, R
G
= 10Ω; V
GE
= 15V.
Diode clamp used: 8ETH06 (See C.T.3)
4
www.irf.com
IRGP20B60PDPbF
250
1000
EON
200
td OFF
Swiching Time (ns)
100
Energy (µJ)
150
EOFF
tdON
10
tF
tR
100
50
0
5
10
15
20
25
30
35
1
0
10
20
30
40
RG (
Ω
)
RG (
Ω
)
Fig. 13
- Typ. Energy Loss vs. R
G
T
J
= 125°C; L = 200µH; V
CE
= 390V, I
CE
= 13A; V
GE
= 15V
Diode clamp used: 8ETH06 (See C.T.3)
18
16
14
Fig. 14
- Typ. Switching Time vs. R
G
T
J
= 125°C; L = 200µH; V
CE
= 390V, I
CE
= 13A; V
GE
= 15V
Diode clamp used: 8ETH06 (See C.T.3)
10000
Cies
1000
10
8
6
4
2
0
0
100
200
300
400
500
600
700
Capacitance (pF)
12
Eoes (µJ)
Coes
100
Cres
10
1
0
20
40
60
80
100
VCE (V)
VCE (V)
16
14
Fig. 15-
Typ. Output Capacitance
Stored Energy vs. V
CE
1.6
1.5
Fig. 16-
Typ. Capacitance vs. V
CE
V
GE
= 0V; f = 1MHz
Normalized V CE(on) (V)
0
10
20
30
40
50
60
70
80
12
10
VGE (V)
400V
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
-50
0
50
100
150
200
8
6
4
2
0
Q G , Total Gate Charge (nC)
T J , Junction Temperature (°C)
Fig. 17
- Typical Gate Charge vs. V
GE
I
CE
= 13A
Fig. 18
- Normalized Typical V
CE(on)
vs.
Junction Temperature
I
CE
= 13A, V
GE
= 15V
www.irf.com
5